Homogeneous and Non-homogeneous
Algorithms

Ioannis Paparrizos

Abstract Motivated by recent best case analyses for some sorting algorithms and
based on the type of complexity we partition the algorithms into two classes:
homogeneous and non-homogeneous algorithms.! Although both classes contain
algorithms with worst and best cases, homogeneous algorithms behave uniformly
on all instances. This partition clarifies in a completely mathematical way the previ-
ously mentioned terms and reveals that in classifying an algorithm as homogeneous
or not best case analysis is equally important with worst case analysis.

Key words Algorithm analysis ¢ Algorithm complexity ¢ Algorithm classifica-
tion

1 Introduction

In the 1970s and 1980s a lot of discussion was going on regarding the right use of
the asymptotic symbols O, © and (2 used to analyze algorithms and compare
their theoretical efficiency. Some researchers use these symbols to denote the
rate of growth of functions and others to denote sets of functions; see relevant
comments in [3, 10, 13]. Following the approach of using the asymptotic symbols
as sets of functions we partition the class of algorithms into two non-empty
subclasses: homogeneous and non-homogeneous algorithms. Both classes are wide.
They contain iterative and recursive algorithms. Although both classes contain

IThis paper was also presented at local proceedings of PCI’09 [Paparrizos, Homogeneous and
Non-Homogeneous Algorithms (2009)].

1. Paparrizos (P<)
Computer Science Department, Columbia University, New York, NY, USA
e-mail: jopa@cs.columbia.edu

A. Migdalas et al. (eds.), Optimization Theory, Decision Making, and Operations Research 241
Applications, Springer Proceedings in Mathematics & Statistics 31,
DOI 10.1007/978-1-4614-5134-1_17, © Springer Science+Business Media New York 2013

242 1. Paparrizos

algorithms with worst and best cases, homogeneous algorithms behave uniformly on
all instances of the problem being solved. The partition clarifies in a completely
mathematical way the terms of algorithm, worst and best case complexity, the only
difference between them being the sets of instances they referred to.

This classification of algorithms was triggered by recent theoretical result
concerning best case analysis of some heapsort algorithms [2,4-8,20] and [21].
Also, computational results indicate that best case analysis might have practical
value too, see, for example, [7] and [21]. Our results indicate that in order to classify
an algorithm as homogeneous or not the complexity of the exact, up to a set of
functions defined by the asymptotic symbol ©, best case and worst case must be
computed. When the classification is accomplished the analysis of the complexity
of the algorithm is complete, indicating, from a theoretical point of view, that best
case analysis is equally important with the worst-case analysis.

The term inhomogeneity has been used by Nadel [17] who characterizes the
imprecision of an analysis of an algorithm in terms of the difference Ac = ¢, — ¢
between the worst and best case complexity, where C is a proper measure of
complexity. In particular, for the sorting problem, C is the number of comparisons.
Using various combinations of disorder parameters, Nadel [17] partitions the set
of instances in big, medium, small, tiny and singleton subclasses and computes
the inhomogeneity in each subclass. Other relevant results for other problems are
presented in [11, 1416, 18]. Our approach is different in the sense that the set of
algorithms is partitioned and not the set of instances of the problem.

In the next section we formally describe the two classes of algorithms. Some
details regarding the algorithm classification are presented in Sect. 3. Recursive and
divide and conquer homogeneous and non-homogeneous algorithms are discussed
and some side results are also presented in the last section.

2 Description of the Two Classes

We derive our results using the Random Access Machine (RAM) model in
which every elementary operation such as addition, subtraction, multiplication, and
division of two numbers, comparison of two numbers, reading and writing a number
in the memory, calling a function, etc., is executed in constant time. It is well known
that all constant functions belong to the set ©(1). Recall that ©(g(n)) denotes a set
of functions defined as follows:

Definition 1. Given a function g(n) we denote by ©(g(n)) the set of functions 7(n)
for which there exists constants a > 0 and b > 0 and a positive integer ng such that

bg(n) <1t(n) < ag(n) QY

for every n > ny.

Homogeneous and Non-homogeneous Algorithms 243

All functions used in this paper denote time and therefore they are positive.
The argument n denotes the dimension of the problem and, hence, it is a positive
integer.

The sets of functions O(g(n)) and Q(g(n)) are similarly defined. Simply, in the
definition of O(g(n)) the left inequality of (1) is missing, while in the definition of
Q(g(n)) the right one. Observe that ©(g(n)) is strictly contained in the sets O(g(n))
and ©2(g(n)). As a result the assumption that the basic operations are executed
in ©(1) time (instead of O(1) or (1) time) provides a more precise algorithm
analysis.

It is well known that the symbol © considered as a binary relation between
functions, is reflexive, symmetric and transitive and therefore it partitions the set
of functions into disjoined classes. In other words, if f(n) and g(n) are two different
functions, then either ©(f(n)) = O(g(n)) or O(f(n)) NO(g(n)) = ©. In particular
the following two results are well known.

Theorem 1. If f(n) € ©(g(n)), then O(f(n)) = O(g(n)).
Theorem 2. The sets O(1) and O (n) are disjoint.

Given a computational problem we denote the set of instances of dimension n
by I(n). Consider now an algorithm A solving the problem under consideration.
The time taken by algorithm A to solve instance i of dimension n is denoted by
t4(i,n). In algorithm analysis we try to describe in a nice way the set of time
functions

S={ta(i,n):i€l(n)}
One way to do this is via the sets of functions defined by the asymptotic symbols
0, O, Q. We are completely satisfied if we can determine a function g(n) such that

§ < O(g(n)). 2)

Once again, observe that we use the set ©(g(n)) which is strictly contained in
the sets O(g(n)) and Q(g(n)), and therefore the description of set S is more precise.
This preference though leads us naturally to the following definition.

Definition 2. An algorithm is homogeneous if there exists a function g(n) such that
relation (2) holds. Otherwise, the algorithm is non-homogeneous.

Theorem 3. The class of algorithms is partitioned into two non-empty and
disjoined subclasses, the subclasses of homogeneous and non-homogeneous
algorithms.

Proof. Let U be the class of all algorithms, H the class of homogeneous and NH
the class of non-homogeneous algorithms. It is obvious from Definition 2 that

HNNH =©and HUNH =U.

It remains to show that H # @ and NH # ©. This proof is done by providing a
simple algorithm for each class.

244 1. Paparrizos

Algorithm 1: MIN
a<T(1)
: for j=2—ndo
if T(j) < a then
a<T(j)
end if
end for

—

AR AN

Firstly, consider the problem of finding the smallest among n given numbers
stored as elements of an array 7.

The algorithm min (Algorithm 1) solves this problem and is homogeneous.
Indeed assuming that an element of an array is reached in constant time ©(1) in
the computational model of constant times, it is easy to conclude that

tmin(i,n) € O(n)

for every instance i € I(n). Hence, algorithm min is homogeneous and H # ©.
Secondly, consider the following problem. Given an array T of n elements sorted
in increasing order, i.e.

T()<T(j+1fori=1,2,....n—1

and a number x, sort all elements of 7" and the number x in increasing order. This
problem is solved by the algorithm insert (Algorithm 2).

Denote by ij, the instance 7 = [1,2,3,...,n—1,n] and x = n+ 1. When algorithm
insert is applied on instance i, the while loop is executed once and hence,

tinsert(iban) € @(1) (3)

Denote now by i, the instance T = [1,2,3,...,n — 1,n] and x = 0. When
algorithm insert is applied on instance iy, the while loop is executed O (n) times
and therefore

tinsert(ivwn) € @(l’l) 4)

This is so because the first two assignments of the pseudo code insert are executed
in ©(1) time and each execution of the while loop takes ©(1) time. We show now
that there is no function g(n) such that relation (2) holds. This in turn shows that
algorithm insert is non-homogeneous. Suppose, on the contrary, that such a function
g(n) does exist. By relation (2) we conclude that

tinsert (i, 1) € O(g(n)) and fipgert (iw, 1) € O(g(n)). (5)

By Theorem 1 and relations (3) and (4) we conclude that

O (tinsert (ip, 1)) = O(1) and O (finsert (i, 1)) = O (n). (6)

Homogeneous and Non-homogeneous Algorithms 245

Algorithm 2: INSERT
1: j<n
:T(n+1)«x
: while j > 1and T(j) >T(j+1) do
temp < T(j)
T(j) T(j+1)
T(j+1)<«temp
jej—1
: end while

i A R

Combining Theorem 1 and relations (5) we conclude that

@(tinsert(ibvn)) = @(tinsert(imn)) = @(g(n)) @)

Finally, from relations (6) and (7) we conclude that ©(1) = ©(n), which
contradicts Theorem 2. This completes the proof of the Theorem.

In the proof of Theorem 3 we used two simple algorithms to show that the
classes of homogeneous and non-homogeneous algorithms are non-empty. In fact
both classes are wide and include recursive and iterative algorithms. The class
of non-homogeneous algorithms includes plenty of iterative algorithms. The great
majority of recursive and divide and conquer algorithms are homogeneous. Among
the exceptions is the well-known recursive sorting algorithm quick sort [12] and
Euclid’s algorithm for computing the greatest common divisor of two numbers.

3 Algorithm Classification

The instances ij, and i,, used in Theorem 3 are the well-known best and worst cases,
respectively. We call i, minimum time instance and i,, maximum time instance. More
precisely, we give the following definition.

Definition 3. An instance i is a minimum (maximum) time instance for an algorithm
A, if the total number of elementary operations executed when algorithm A is applied
on it is the minimum (maximum) possible.

The analysis so far and particularly algorithm min used in the proof of Theorem 3
might mislead someone to conclude that homogeneous algorithms do not contain
minimum and maximum time instances. This is not correct. A striking example of an
iterative homogeneous algorithm containing minimum and maximum time instances
is the well-known Floyd’s classical algorithm [9] for building an initial heap. A heap
is a data structure introduced in [22] to develop an efficient general iterative sorting
algorithm known today as heapsort. A recursive homogeneous algorithm containing
worst and best cases is the well-known algorithm in [1], which computes order
statistics in linear time.

246 1. Paparrizos

Some algorithms are obviously homogeneous. If this is not clear for a new
algorithm with unknown complexity, using Definition 3 we can set

Sp={ ip : ip € I(n) is a minimum time instance},
Sw={ iy : iy € I(n) is a maximum time instance}.

In the worst (best) case analysis of an algorithm we try to determine a set ©(g(n))
(©(f(n))) containing the set S,, (Sp) and say that the worst (best) case complexity
of the algorithm is ©(g(n)) (O(f(n))). Observe the similarities among the worst
and best case complexities of a non-homogeneous algorithm and the complexity of
a homogeneous algorithm. In particular, the only difference is the set of instances
on which they are referred to. Therefore, all these complexities should be described
by sets of the form ©(g(n)).

It is now of interest to determine the complexity of a non-homogeneous
algorithm, i.e, to find a set of functions including set S. Since a set of the form
©(g(n)) does not exist, we generalize Definition 1 as follows.

Definition 4. Given two (proper) functions f(n) and g(n) we denote by
O(f(n),g(n)) the set of functions #(n) for which there exist constants a > 0 and
b > 0 and a positive integer ng such that

bf(n) <t(n) < ag(n)
for n > ng.

Itis easy to see that O (f(n),g(n)) = Q(f(n))NO(g(n)). Itis also easy to see that
the sets ©(0,0) = 2(0) = O(e0) include always set S. However, in order to be as
precise as possible, we are always looking for a minimal set containing set S. In the
case of non-homogeneous algorithms we are seeking the minimal set O (f(n),g(n))
containing set S. Obviously, the set ©(f(n),g(n)) is minimal if there exist worst
and best case instances i,, and i; such that ¢(i,,,n) € ©(g(n)) and t(ip,n) € O(f(n)),
respectively. Recall that the set ©(1,n) describing the complexity of algorithm
insert in Theorem 3 is minimal. Observe also that the classification of an algorithm
as homogeneous or not is not possible unless the set ©(f(n),g(n)) describing its
complexity is minimal. As the set ©(f(n),g(n)) is described by best and worst case
complexities, both complexities are equally important from the theoretical point of
view.

4 Additional Results and Discussion

We mentioned earlier that homogeneous algorithms contain worst and best cases.
Hence, the average complexity of a homogeneous algorithm is easily defined.
Clearly, the mean time of the algorithm on a random instance is,

_ Yici(nt(isn)

) =)

Homogeneous and Non-homogeneous Algorithms 247

where |I(n)| denotes the number of elements of set /(n). If the complexity of
the homogeneous algorithm is ©(g(n)), it is natural to expect that #(n) € ©(g(n)).
Indeed, this is the case.

Theorem 4. The average complexity of a homogeneous algorithm of complexity
O(g(n)), is also ©(g(n)).

Proof. Let t(n) be the expected time to solve a random instance. Then

~ Dieiwt(in) Tierm ©(8(n)) |I(n)|O(g(n)) n
SRR TR 7 R 7o R)

and the proof is complete. O

t(n)

Observe that this result is independent of the distribution of the instances.

So far we focused our attention on iterative algorithms. Recursive algorithm
can be homogeneous and non-homogeneous too. But how recursive homogeneous
and non-homogeneous algorithms look like? A recursive or divide and conquer
algorithm makes a fixed number of calls to itself. Therefore, if each call is made on
a problem with fixed dimension, the algorithm is homogeneous provided the work
required to solve all subproblems dominates the remaining work. On the contrary, if
the dimensions of the subproblems on which calls are made are not fixed and depend
on the instance, the algorithm might very well be non-homogeneous. Recall that
this is the case for the algorithm quicksort [12]. A recursive or divide and conquer
algorithm can be non-homogeneous if the number of calls to subproblems is not
fixed and depends on the instance. This is the case for Euclid’s algorithm computing
the greatest common divisor.

Acknowledgments We thank an anonymous referee for useful suggestions and for bringing to our
attention the reference [17].

References

1. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection. J. Comp. Syst.
Sci. 7(4), 448-461 (1973)
. Bollobas, B., Fenner, T.I., Frieze, A.M.: On best case of heapsort. J. Algorithms 20, 205-217
(1996)
. Brassard, G.: Crusade for a better notation. ACM Sigact News 17(1), 60—-64 (1985)
. Ding, Y., Weiss, M.A.: Best case lower bounds for Heapsort. Computing 49, 1-9 (1992)
. Dutton, R.: Weak-heapsort. BIT 33, 372-381 (1993)
. Edelkamp, S., Wegener, I.: On the performance of weak heasort, STACS. Lecture Notes in
Computer Science, pp. 254-266. Springer, Berlin (2000)
7. Edelkamp, S., Stiegeler, P.: Implementing heapsort with nlogn —0.9n and quicksort with
nlogn+ 0.2n comparisons. ACM J. Exp. Algorithmics JEA) 7(1), 1-20 (2002)
8. Fleischer, R.: A tied lower bound for the worst case of bottom-up heapsort. Algorithmica 11,
104-115 (1994)
9. Floyd, R. Algorithm 245: treesort 3. Comm. ACM 7, 701 (1964)

N

[) NS I SOV

248 1. Paparrizos

10. Gurevich, Y.: What does O(n) mean? ACM Sigact News 17(4), 61-63 (1986)

11. Haralick, R.M., Elliot, G.L.: Increase tree search efficiency for constraint satisfaction problems.
Artif. Intell. 14, 263-313 (1980)

12. Hoare, A.: Quicksort. Comp. J. 5, 10-15 (1962) s

13. Knuth, D.: Big omicron and big theta and big omega. ACM Sigact News 8(2), 18-23 (1976)

14. Nadel, B.A.: The consistent labeling problem and its algorithms: Towards exact-case complex-
ities and theory-based heuristics. Ph.D. dissertation, Department of Computer Science, Rutgers
University, New Brunswick, NJ, May (1986)

15. Nadel, B.A.: The complexity of constraint satisfaction in Prolog. In: Proceedings of the 8th
National Conference Artificial Intell. (AAAI‘90)pp. 33-39, Boston, MA, August 1990. An
expanded version is available as Technical Report CSC-89-004, Department of Computer
Science, Wayne State University, Detroit, MI (1989)

16. Nadel, B.A.: Representation selection for constrain satisfaction: a case study using n-queens.
IEEE Expert 5(3), 16-23 (1990)

17. Nadel, B.A.: Precision complexity analysis: a case study using insertion sort. Inf. Sci. 73,
139-189 (1993)

18. Nudel, B.A.: Solving the general consistent labeling (or constraint satisfaction) problem: two
algorithms and their expected complexities. In: Proceedings of the 3rd National Conference
Artificial Intell. (AAAI‘83), pp. 292-296, Washington, DC, Aug (1983)

19. Paparrizos, 1.: Homogeneous and non-homogeneous algorithms. In: Proceedings of the 13th
Panhellenic Conference on Informatics (PCI’09), September (2009)

20. Schatftfer, R., Sedgwick, R.: The analysis of heapsort. J. Algorithms 15, 76-100 (1993)

21. Wang, X.D., Wu, Y.J.: An improved heapsort algorithm with nlogn — 0.788928n comparisons
in the worst case. J. Comp. Sci. Tech. 22(6), 898-903 (2007)

22. Williams, J.W.J.: Algorithm 232: heapsort. Comm. ACM 6, 347-348 (1964)

	Homogeneous and Non-homogeneous Algorithms
	1 Introduction
	2 Description of the Two Classes
	3 Algorithm Classification
	4 Additional Results and Discussion
	References

