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ABSTRACT

Fast, Scalable, and Accurate Algorithms for
Time-Series Analysis

Ioannis Paparrizos

Time is a critical element for the understanding of natural processes (e.g., earthquakes and

weather) or human-made artifacts (e.g., stock market and speech signals). The analysis

of time series, the result of sequentially collecting observations of such processes and arti-

facts, is becoming increasingly prevalent across scientific and industrial applications. The

extraction of non-trivial features (e.g., patterns, correlations, and trends) in time series is a

critical step for devising effective time-series mining methods for real-world problems and

the subject of active research for decades. In this dissertation, we address this fundamen-

tal problem by studying and presenting computational methods for efficient unsupervised

learning of robust feature representations from time series. Our objective is to (i) simplify

and unify the design of scalable and accurate time-series mining algorithms; and (ii) provide

a set of readily available tools for effective time-series analysis. We focus on applications

operating solely over time-series collections and on applications where the analysis of time

series complements the analysis of other types of data, such as text and graphs.

For applications operating solely over time-series collections, we propose a generic com-

putational framework, GRAIL, to learn low-dimensional representations that natively pre-

serve the invariances offered by a given time-series comparison method. GRAIL represents a

departure from classic approaches in the time-series literature where representation methods

are agnostic to the similarity function used in subsequent learning processes. GRAIL relies

on the attractive idea that once we construct the data-to-data similarity matrix most time-

series mining tasks can be trivially solved. To overcome scalability issues associated with



approaches relying on such matrices, GRAIL exploits time-series clustering to construct

a small set of landmark time series and learns representations to reduce the data-to-data

matrix to a data-to-landmark points matrix. To demonstrate the effectiveness of GRAIL,

we first present domain-independent, highly accurate, and scalable time-series clustering

methods to facilitate exploration and summarization of time-series collections. Then, we

show that GRAIL representations, when combined with suitable methods, significantly out-

perform, in terms of efficiency and accuracy, state-of-the-art methods in major time-series

mining tasks, such as querying, clustering, classification, sampling, and visualization. Over-

all, GRAIL rises as a new primitive for highly accurate, yet scalable, time-series analysis.

For applications where the analysis of time series complements the analysis of other

types of data, such as text and graphs, we propose generic, simple, and lightweight method-

ologies to learn features from time-varying measurements. Such applications often organize

operations over different types of data in a pipeline such that one operation provides input—

in the form of feature vectors—to subsequent operations. To reason about the temporal

patterns and trends in the underlying features, we need to (i) track the evolution of features

over different time periods; and (ii) transform these time-varying features into actionable

knowledge (e.g., forecasting an outcome). To address this challenging problem, we propose

principled approaches to model time-varying features and study two large-scale, real-world,

applications. Specifically, we first study the problem of predicting the impact of scientific

concepts through temporal analysis of characteristics extracted from the metadata and full

text of scientific articles. Then, we explore the promise of harnessing temporal patterns in

behavioral signals extracted from web search engine logs for early detection of devastating

diseases. In both applications, combinations of features with time-series relevant features

yielded the greatest impact than any other indicator considered in our analysis. We believe

that our simple methodology, along with the interesting domain-specific findings that our

work revealed, will motivate new studies across different scientific and industrial settings.
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Chapter 1

Introduction

This thesis studies and develops computational methods for efficient unsupervised learning

of robust feature representations from time series with the purpose of (i) simplifying and

unifying the design of scalable and accurate time-series mining algorithms; and (ii) providing

a set of readily available tools for effective time-series analysis.

Time is a critical element for the understanding and the explanation of behaviors associ-

ated with the evolution of natural processes (e.g., earthquakes and weather) or human-made

artifacts (e.g., stock market, audio, and speech signals). Time series are often the outcome

of sequentially recording time-varying measurements of such processes and artifacts. Time

series appear in almost every discipline, including astronomy (e.g., light curves of stars

[Wachman et al., 2009]), biology (e.g., gene expression [Bar-Joseph et al., 2002]), chem-

istry (e.g., chlorine levels in drinking water [Papadimitriou et al., 2005]), meteorology (e.g.,

weather forecasting [Honda et al., 2002]), earth and environmental sciences (e.g., drought

monitoring [Goddard et al., 2003] and automobile traffic monitoring [Papadimitriou et al.,

2003]), medicine and healthcare (e.g., electrocardiogram signals [Ge and Smyth, 2000]),

finance and economics (e.g., stock market signals [Mantegna, 1999; Gavrilov et al., 2000;

Ruiz et al., 2012]), engineering (e.g., human motion signals [Uehara and Shimada, 2002;

Keogh et al., 2004]), and others. Recent advances in data processing, storage, network-

ing, and sensing technologies permit the collection of enormous amounts of time series
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across scientific and industrial applications [Palpanas, 2015; Mahdavinejad et al., 2017].

This ubiquity and proliferation of time-varying measurements has generated substantial

interest in querying (i.e., detection of similar time series to a given time-series query)

[Agrawal et al., 1993; Ding et al., 2008; Kin-pong and Ada, 1999; Korn et al., 1997;

Lian et al., 2007; Papapetrou et al., 2011; Shou et al., 2005; Wang et al., 2014a], in-

dexing (i.e., efficient retrieval of time series given a time-series query) [Cai and Ng, 2004;

Chen et al., 2007a; Keogh, 2006; Keogh et al., 2001b; Keogh and Ratanamahatana, 2005;

Vlachos et al., 2006], classification (i.e., determination of the category of a previously un-

seen time series) [Hu et al., 2013; Mueen et al., 2011; Ratanamahatana and Keogh, 2004;

Ye and Keogh, 2009; Bagnall et al., 2017], and clustering (i.e., partitioning of time series into

groups based on some notion of similarity) [Kalpakis et al., 2001; Xiong and Yeung, 2002;

Alon et al., 2003; Warren Liao, 2005; Keogh and Lin, 2005; Megalooikonomou et al., 2005;

Petitjean et al., 2011; Yang and Leskovec, 2011; Zakaria et al., 2012] of time series.

Prior to the application of any task-specific operations, all time-series mining algorithms

first discover and exploit hidden patterns in time series [Han et al., 2011]. Despite being

the subject of active research for decades across scientific fields, such as in statistics [Hamil-

ton, 1994], signal processing [Orfanidis, 1985], pattern recognition [Lecun and Bengio, 1995;

Müller et al., 1997], machine learning [Dietterich, 2002], data mining [Keogh and Kasetty,

2003], and databases [Agrawal et al., 1993; Faloutsos et al., 1994], there is currently no

agreement on a set of readily available methods and tools for effective exploitation of pat-

terns in time series. The extraction of non-trivial patterns (e.g., relations, correlations,

trends, and anomalies) in time series, which are often simply referred to as features, is

a critical step for devising effective methods to analyze time series and solve real-world

problems. In this dissertation, we address this problem by presenting principled methods

to efficiently learn feature representations from time series with the goal to solve temporal

mining tasks for two types of applications: (i) applications operating solely over time-series

collections; and (ii) applications where the analysis of time series complements the analysis

of other types of data, such as text and graphs.
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The most prominent difficulties in time-series analysis arise from three factors: (i) the

temporal ordering of observations; (ii) the high dimensionality of data; and (iii) the large

volumes of data. This combination of factors introduces severe complications in time-series

analysis, which is considered as one of the top 10 challenging problems in data mining [Yang

and Wu, 2006]. Specifically, the temporal ordering may introduce distortions in time series,

which complicates the definition of models to describe time series and similarity functions

to compare time series that agree with the human perception of similarity. Additionally,

the high dimensionality increases the computation and storage requirements of methods op-

erating directly over time series. Finally, the large volumes of time series may dramatically

affect the performance of time-series mining algorithms, which can make effective methods

over small time-series collections appear impractical in large-scale settings. Therefore, if we

could automatically learn feature representations from time series while at the same time

addressing the challenges associated with the temporal ordering, the high dimensionality,

and the large volume of time series, we would be able to unify the design of scalable and

accurate time-series mining algorithms.

The bottleneck in automating the process of learning feature representations from time

series revolves around the design choices that time-series mining algorithms make to address

the aforementioned challenges [Esling and Agon, 2012]. Specifically, the design of time-series

mining algorithms involves taking decisions for three major components: (i) the method of

choice to represent time series; (ii) the method of choice to compare time series; (iii) the

method of choice to index time series. Each one of these components attempts to separately

address challenges associated with time-series analysis. To address challenges associated

with the high dimensionality of data, time-series representation methods construct low-

dimensional representations that preserve fundamental characteristics of each individual

time series. To address challenges associated with the temporal ordering of observations,

time-series comparison methods define similarity functions between pairs of time series

that offer invariances to inherent distortions in time series. Finally, to address challenges

associated with the large volumes of data, time-series indexing methods organize time series
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to permit efficient retrieval from massive time-series collections. The time-series analysis

community has devoted significant effort to propose new approaches and optimize existing

approaches for each one of these core components [Esling and Agon, 2012].

A consequence of the separate optimization of each one of the core components is that

currently there is a mismatch between the characteristics preserved by time-series repre-

sentations methods, the invariances offered by effective, yet computationally expensive,

similarity functions, and the properties that similarity functions require to obey so that

indexing mechanisms enable efficient retrieval of time series. Therefore, existing approaches

for major time-series mining tasks suffer from a number of drawbacks. Specifically, to avoid

any loss of information due to the exploitation of representation methods that reduce the

dimensionality of the time series, existing methods often operate directly over the original

high-dimensional time series and, therefore, such methods become prohibitively expensive.

For example, this is the case for the majority of time-series classification methods [Bagnall

et al., 2017]. In contrast, to scale to large volumes of data, existing methods often sacri-

fice accuracy for efficiency in their attempt to directly exploit representations that are not

suitable to capture invariances offered by highly accurate, yet expensive, similarity mea-

sures. For example, this is the case for online time-series clustering methods that currently

only support less-effective `p-norms as their similarity measures in order to directly ex-

ploit existing representation methods [Ding et al., 2015]. Finally, to scale to large volumes

of data without sacrificing accuracy, existing methods often follow a complicated, two-

step approach to indirectly exploit representations to prune part of the expensive pairwise

comparisons. For example, this is the case for querying methods that required multiple

attempts to properly exploit representations that do not preserve invariances offered by

the chosen similarity function [Yi et al., 1998; Kim et al., 2001; Sakurai et al., 2005b;

Keogh and Ratanamahatana, 2005; Rakthanmanon et al., 2012].

The two-step approach is the most prominent paradigm to accelerate time-series mining

tasks while addressing all aforementioned challenges. The requirement to perform two

steps is due to the dependence on the seminal GEMINI framework [?; Faloutsos et al.,
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1994], which laid the foundations for efficient time-series retrieval under Euclidean distance

(ED). Specifically, the core idea behind GEMINI is to define a distance measure over the

low-dimensional representations of time series to lower bound (i.e., prune part of) the ED

comparisons. To support distance measures other than ED, two-step approaches [Yi et al.,

1998; Kim et al., 2001; Sakurai et al., 2005b; Keogh and Ratanamahatana, 2005] additionally

have to show that ED lower bounds the new distance measure. Considering the plethora of

representation methods and distance measures [Esling and Agon, 2012; Wang et al., 2013;

Bagnall et al., 2017], as well as the difficulty in developing effective lower bounding measures,

we believe that such two-step approach is not sustainable anymore. The need for time-series

mining methods to exploit similarity functions other than ED is also responsible for the slow

adaptation of techniques developed to accelerate computational methods in metric space,

such as using sparse coding methods to learn sparse representations [Lee et al., 2007; Mairal

et al., 2010] or locality sensitive hashing to answer queries approximately [Gionis et al., 1999;

Kulis and Grauman, 2012].

Inspired by the insatiable demand for fast, scalable, and accurate solutions to analyze

large time-series collections, in this thesis we investigate the design of computational meth-

ods to automatically learn effective, compact, and low-dimensional feature representations

from time series. By constructing such time-series representations, our goal is to (i) simplify

and unify the design of scalable and accurate time-series mining algorithms; and (ii) pro-

vide tools that require minimal input from scientists or practitioners and ease the analysis

of massive time-series collections. Specifically, we advocate that given only a method to

compare or model time series (i.e., if we address challenges associated with the temporal

ordering of observations), the extraction of compact feature representations in time series

can be fully automated. Importantly, such feature representations can seamlessly integrate

with and, therefore, accelerate existing methods to perform major time-series mining tasks.

We focus on two types of applications: (i) applications that operate solely over time-series

collections; and (ii) applications where the analysis of time series complements the analysis

of other types of data.
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For applications operating solely over time-series collections, we propose a generic com-

putational framework, GRAIL, to learn time-series representations that natively preserve

the invariances offered by a given time-series comparison method. This is fundamentally

different from current approaches in the time-series literature where representation methods

are agnostic to the similarity function used in subsequent learning processes. Specifically,

given a similarity function, such computational framework learns low-dimensional represen-

tations that satisfy a number of important principles: (i) preserve the pairwise similarities

by the chosen similarity function on time series in the original high-dimensional space, with

the goal to leverage methods that require as input feature vectors or methods developed

for data in metric space; (ii) lower bound the similarity function, with the goal to facili-

tate time-series querying and indexing; (iii) permit reusing part of its coordinates without

having to reconstruct the representation, with the goal to enable operations in online set-

tings with limited computational resources; and (iv) support efficient and memory-tractable

operations, such as similarity computation over available and new time series and eigende-

composition of the full similarity matrix, with the goal to exploit highly effective methods

relying on these operations. To learn such robust representations, GRAIL relies on the at-

tractive idea that once we construct the full data-to-data similarity matrix most time-series

mining tasks can be solved using existing off-the-shelf methods. However, the scalability

of approaches relying on full data-to-data matrices remains challenging. For example, the

construction of such data-to-data matrices requires time that is quadratic in the number

of time series. To overcome this scalability issue, our computational framework constructs

a small set of landmark time series that effectively summarize time-series collections and

reduces the data-to-data matrix to a data-to-landmark points matrix, which requires linear

time to construct and linear space to store. Once such data-to-landmark points matrix is

constructed, GRAIL learns representations to satisfy the aforementioned principles. GRAIL

representations seamlessly integrate with and, therefore, accelerate existing methods to per-

form tasks of critical importance for time-series analysis, such as querying and indexing,

clustering, classification, sampling, and visualization of time series. In Chapter 3, we present
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a set of novel scalable and accurate time-series clustering methods to group time series that

share similar characteristics and to effectively summarize such sets of time series. Later,

in Chapter 4, we exploit the cluster centroids of such clustering methods as landmark time

series and we show how GRAIL represents time series as a linear combination of those

landmark time series.

For applications where the analysis of time series complements the analysis of other

types of data, we propose generic, simple, and lightweight methodologies to learn feature

representations from time-varying measurements that seamlessly integrate with techniques

developed for other types of data. Specifically, in many complex, real-world applications,

we need to measure different facets of an underlying process, which requires operations

over different types of data (e.g., text, graphs, and time series). These applications often

organize operations in pipeline, where each operation often captures user-defined charac-

teristics in the form of feature vectors and provides input to subsequent operations. To

reason about the temporal relationships, trends, and patterns in such simple features, we

need to (i) track the evolution of features over different time periods; and (ii) transform

these time-varying features into actionable knowledge (e.g., predicting or forecasting an

outcome). Unfortunately, because these operations often produce thousands of (simple)

features, the exhaustive combination of such features and their computation over different

time periods might result in an explosion of new features that we cannot afford to store or

preprocess. Importantly, defining time-series comparison methods for each one of the new

features becomes prohibitively time-consuming and requires expertise over the data and

the underlying features. Therefore, approaches such as GRAIL, which was developed to

learn feature representation for a single type of time series, are not easily applicable in such

settings. To address this challenging problem that often occurs in scientific and industrial

applications, as we will see, we rely on traditional, lightweight, and principled approaches to

model the time-varying features produced by other operators. To demonstrate the impact of

exploiting methods from time-series analysis to reason about the temporal relationships of

features produced over different types of data, we study two large-scale, real-world, applica-



CHAPTER 1. INTRODUCTION 8

tions. Specifically, in Chapter 5 we study the problem of predicting the impact of scientific

concepts through temporal analysis of characteristics extracted from the metadata and full

text of scientific articles. Later, in Chapter 6, we explore the promise of harnessing temporal

patterns in behavioral signals extracted from web search engine logs for early detection of

devastating diseases.

Specifically, the key contributions of this dissertation are as follows:

• Efficient and Accurate Time-Series Clustering: In Chapter 3, we address the

problem of domain-independent, accurate, and scalable clustering of time series. Clus-

tering of time series has received significant attention, not only as a powerful stan-

dalone exploratory method, which identifies and summarizes interesting patterns in

the underlying data, but also as a preprocessing step or subroutine for other tasks.

Unfortunately, existing highly accurate methods cannot scale to large volumes of data,

they are domain-specific, or they rely on expensive distance measures to compare time

series. To address these drawbacks, we proceed as follows: (i) we show how to de-

rive a distance measure from cross-correlation that offers important invariances to

time-series distortions in a principled manner; we also show how to efficiently com-

pute this measure; (ii) we present two novel methods to compute a single centroid

or multiple centroids per cluster when that distance measure is used; (iii) we develop

two novel algorithms for time-series clustering that rely on the aforementioned dis-

tance measure: one algorithm computes a single centroid per cluster based on the

entire set of time series in each cluster, whereas the other (outlier-aware) algorithm

computes multiple centroids per cluster in order to consider the proximity and spatial

distribution of time series in each cluster; (iv) we present a one-nearest-neighbor clas-

sification algorithm that relies on time-series clustering as a subroutine to reduce the

search space and accelerate one-nearest-neighbor algorithms; and (v) we perform an

extensive experimental evaluation of our methods against state-of-the-art time-series

distance measures, clustering algorithms, and classification algorithms. Our findings

show that our efficient and parameter-free distance measure leads to similar results
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to the most accurate but computationally expensive distance measures that require

parameter tuning. Our clustering methods outperform all state-of-the-art scalable

and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based

clustering approaches, with only one method achieving similar performance, but this

method requires tuning of parameters and cannot scale to large volumes of data.

Finally, our evaluation suggests that we can rely on time-series clustering methods

as subroutines to effectively reduce the search space for one-nearest-neighbor time-

series classification algorithms. Consequently, we believe that our methods emerge as

domain-independent, accurate, and scalable approaches for time-series comparison,

clustering, and classification.

• Efficient Time-Series Representation Learning: In Chapter 4, we address the

problem of efficiently learning data-aware, low-dimensional representations of time

series that preserve the invariances offered by a given similarity function. This is fun-

damentally different from the time-series literature where representation methods are

agnostic to the similarity function used in subsequent learning processes. The current

mismatch between the properties preserved by low-dimensional representations and

the properties required by effective, yet computationally expensive, similarity mea-

sures, has led existing approaches for time-series mining tasks to sacrifice effectiveness,

and many times accuracy, for efficiency. A promising direction to unify the properties

preserved by similarity measures and representation methods arises with the use of

kernel methods. Specifically, kernel methods interact with data through pairwise com-

parisons using a kernel function and, therefore, require constructing a data-to-data

similarity matrix prior to solving any task. To alleviate the burdens associated with

the high memory and runtime costs of (i) computing the data-to-data matrix and (ii)

performing dimensionality reduction using such matrix, we propose GRAIL, a generic

representation learning framework. GRAIL uses the Nyström method [Nyström, 1930;

Williams and Seeger, 2001] to reduce the data-to-data matrix to a data-to-landmark

points matrix and relies on matrix sketching [Liberty, 2013] to approximate the eigen-
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decomposition of the data-to-data matrix and, therefore, learn low-dimensional rep-

resentations that preserve invariances offered by a user-specified kernel function. The

effectiveness of GRAIL critically relies on the (i) choice of kernel function; (ii) choice

of landmark time series; (iii) unsupervised estimation of parameters that affects the

compactness and the reconstruction quality of the learned representations. To ad-

dress these issues, we proceed as follows: (i) we develop an efficient kernel function

to compare time series under important invariances for time-series distortions; (ii)

we construct landmark time series using the effective time-series clustering methods

we developed in Chapter 3; (iii) we present a method to estimate kernel function

parameters and compactness of representation; (iv) we efficiently learn GRAIL repre-

sentations by approximating the eigendecomposition of the data-to-data matrix using

matrix sketching; (v) we show how GRAIL representations accelerate existing methods

for major time-series mining tasks, such as querying and indexing, clustering, clas-

sification, sampling, and visualization; and (vi) we evaluate our ideas by conducting

an extensive experimental evaluation. Our findings show that kernel classifiers us-

ing our kernel function significantly outperform one-nearest-neighbor classifiers with

state-of-the-art distance measures, which debunks a long-standing perception in the

time-series literature that such classifiers are difficult to beat. GRAIL representations

are more compact and have significantly better pruning power than current time-series

representations. Finally, GRAIL representations, combined with kernel methods, sig-

nificantly outperform, in terms of efficiency and accuracy, state-of-the-art methods

that operate over the full length of time series in all aforementioned tasks. We believe

that GRAIL rises as a new primitive for highly accurate, yet scalable, time-series anal-

ysis that significantly simplifies the design of new algorithms while requiring minimal

user input.

• An End-to-End System for Predicting the Impact of Scientific Concepts:

In Chapter 5, we study the problem of predicting the future impact of scientific con-

cepts and describe an end-to-end system developed for this task by a team of re-
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searchers at Columbia and several other universities. In many complex, real-world

applications, such as the one we consider in this chapter, we need to measure dif-

ferent facets of an underlying process, which requires answers in real time and the

combination of knowledge from different types of data (e.g., graphs, text, and time

series). Considering these requirements, our objective is to (i) develop generic, sim-

ple, and lightweight methodologies to effectively extract features from time-varying

measurements that seamlessly integrate with techniques developed for other types of

data; and (ii) demonstrate the impact of exploiting methods from time-series analysis

to significantly improve the accuracy of prediction models used in such large-scale,

real-world applications. To achieve this goal, we proceed as follows: (i) we review the

challenges of this ambitious, yet important, problem of identifying research concepts

that hold the most promise as early as possible; (ii) we describe the architecture of

the system we built to facilitate the extraction of characteristics from articles in the

scientific literature and real-time prediction of the future impact of scientific concepts;

(iii) we outline the large number of characteristics that our system extracts from the

metadata and the full text of scientific articles; (iv) we describe a variety of prin-

cipled statistical measures capable of capturing patterns in short, sparse, and noisy

time-varying characteristics extracted from scientific articles; and (v) we perform a

large-scale experimental evaluation. Our results show the clear benefit of full text

features over metadata features and that temporal features contribute the most in

predictions. Specifically, the benefit of the analysis of the full text of scientific articles

is well worth the increased performance cost of the natural language analysis. Im-

portantly, across all our experiments, combinations of full text features and metadata

features with time series relevant features yielded the greatest impact than any other

indicator considered in our analysis. This is of particular importance, considering

the lightweight methodology used to extract feature representations in comparison

to approaches used in Chapters 3 and 4. We believe such simple methodology is

well-suited for applications where underlying operations produce thousands of user-
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defined characteristics that we need to track over time and transform into actionable

knowledge.

• Detecting Devastating Diseases in Search Logs: In Chapter 6, we explore the

promise of harnessing temporal patterns in behavioral signals extracted from web

search engine logs for early detection of devastating diseases. Together with collabo-

rators from Microsoft Research, we leveraged billions of queries from the Bing search

engine and studied the feasibility of doing early detection of the presence of pancre-

atic cancer in experiential user queries. We cast this as a binary classification task,

where the model is trained on features extracted from search log query timelines of

experiential pancreatic cancer searchers and symptom-only searchers. We rely on a

similar methodology to the one we developed in Chapter 5 to extract features from

short, sparse, and noisy time series that often appear in the analysis of web search

engine logs. We proceed as follows: (i) we introduce the early detection of diseases as

a promising new application of search log mining and machine learning that scales to

millions of searchers; (ii) we describe the process of generating a large-scale real-world

dataset to study the feasibility of early detecting experiential pancreatic cancer cases

from longitudinal individual search activity; (iii) we review the large set of character-

istics that we extract from query timelines; (iv) we present a simple methodology to

track the temporal relationships and patterns in the content of queries over time; (v)

we summarize our prediction model to forecast with significant lead times that users

will later input experiential queries for pancreatic cancer; (vi) we explore the influence

of different factors, such as the lead time or the presence of specific symptoms in the

search activity, on the predictive performance of our learned models, including true

positive rates when false positive rates are strictly controlled. Our study provides in-

sights on the feasibility of learning from search engine logs to predict future issuance

of experiential queries about pancreatic cancer at a low error rate. The success of

these methods has implications for online methods that would provide passive screen-

ing of searchers, to offer early warning about potential signs of pancreatic cancer and
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other devastating diseases. Our evaluation suggests that the combination of static

features extracted from query timelines with our temporal features yielded the great-

est impact than any other feature category considered in our analysis. Additionally,

our analysis revealed a number of important domain-specific findings. For example,

we discovered that conditioning on different symptoms and risk factors can enhance

predictive power. We found capture-cost tradeoffs associated with different symptoms

and risk factors in terms of the total number of truly positive cases identified versus

the number of searchers who would be mistakenly alerted. We characterized model

performance as we increase lead time and we found that we can attain a true positive

rate of 5-30% while controlling the false positive rate to 0.00001-0.01 many months

before a diagnostic query is observed. We believe that our simple methodology to

reason about the evolution of time-varying characteristics in such important, large-

scale, and real-world application, along with the interesting domain-specific findings

that our work revealed, will motivate new studies across different scientific disciplines

and industrial settings.

We start with a review of the relevant and necessary background for time-series analysis

in Chapter 2. Chapters 3, 4, 5, and 6 present our work on clustering time series, learning

time-series representations, predicting the future impact of scientific concepts, and detecting

devastating diseases in search logs, respectively, as we discussed above. Then, we describe

related work in Chapter 7. Finally, we present our conclusions in Chapter 8 and discuss

directions for future work in Chapter 9.
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Chapter 2

Background and Preliminaries

In this chapter, we provide the necessary definitions and notation for time series (Sec-

tion 2.1). We summarize distortions that are common in time series (Section 2.2) and the

most popular distance measures for such data (Section 2.3). Then, we review common

time-series representations and dimensionality reduction methods (Section 2.4) and provide

a brief discussion of common tasks for time-series analysis (Section 2.5).

2.1 Definitions and Notation

A time series is a real-valued, high-dimensional vector that consists of observations with

a natural temporal ordering. A time series is often the outcome of recording time-varying

measurements of an underlying process. Specifically, a univariate time series contains se-

quentially collected observations of a single time-varying measurement whereas a multivari-

ate time series contains sequentially and simultaneously collected observations of two or

more time-varying measurements. Depending on the spacing between observation times, a

time series is equally spaced if the spacing of observation times is constant and unequally

or irregularly spaced if the spacing of observation times is not constant. The analysis of

univariate, equally spaced time series is the most popular in practice because (i) methods to

analyze multivariate time series are often extensions of methods for univariate time series



CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

and (ii) it is common to transform irregularly spaced time series to equally spaced time

series using some form of interpolation (i.e., the process of constructing new observations

within a range of known observations). In this thesis, we focus on univariate, equally spaced

time series that we refer simply as time series.

We denote a time series of m ordered real values as a vector ~x = (x1, . . . ,xm), where

xi ∈ R, and we omit any explicit reference to the time stamps associated with each xi. We

organize an unordered set of n time series into a time-series dataset or database denoted as

X = {~x1, . . . ,~xn}, where ~xi ∈ Rm, or, equivalently, in a row-wise matrix X = [~x1, . . . ,~xn]T ∈

Rnxm. Considering that the observation of an underlying process might span a large period

of time or that new observations might continuously append into existing time series (e.g.,

as in the case of a streaming application), it becomes common to omit values of a long time

series and only operate over time-series subsequences. Specifically, given a time series ~x, a

subsequence ~s(k, l) = (xk, . . . ,xk+l−1), with 1 ≤ k ≤m− l+ 1, is a time series consisting of

l ≤m contiguous values starting at offset k of ~x. For a fixed l and an offset of step, with

1 ≤ step ≤m− l, we can extract m−l
step + 1 subsequences using a sliding window that shifts

and extracts ~s(k, l) from each offset as follows: Slx(step) =
⋃m−l

step

i=0 ~s(i ·step+ 1, l).

The temporal ordering and the high-dimensionality of observations raise diverse facets of

complications that make the analysis of time series distinct from other types of data. Specif-

ically, the requirement to sequentially collect observations may distort time series in some

way (as we see in Section 2.2) and increase the complexity of defining time-series compari-

son methods that agree with the human perception. Additionally, the high-dimensionality

of observations increases the computation and storage requirements of methods operating

directly over raw time series. Therefore, it is well understood [Esling and Agon, 2012],

that core aspects for effective and scalable time-series analysis are the methods for time-

series representation and time-series comparison. The goal in time-series representation

is to construct X ′, a representation of X of reduced dimensionality d < m such that X ′

closely approximates X. The goals In time-series comparison is to define a distance func-

tion Dist(~x,~y)→ R between two time series ~x and ~y, such that small values of Dist to
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indicate very similar time series whereas large values to indicate dissimilar time series. The

distance measure has to be nonnegative (i.e., D(~x,~y)≥ 0). If the distance measure is sym-

metric (i.e., D(~x,~y) =D(~y,~x)) and satisfies the triangle inequality (i.e., given a third time

series ~z, D(~x,~y)≤D(~x,~z)+D(~z,~y)), the distance measure is a metric. Distance metrics are

particularly important for efficient time-series analysis as metrics are suitable to perform

time-series indexing (as we will see in Section 2.4).

Depending on whether the full time series or subsequences of the time series are consid-

ered during the computation of the distance value, we observe three scenarios to compute

a distance: (i) full comparison: the distance measure considers the entire time series; (ii)

sequence to subsequence comparison: the distance measure slides the shorter time series

against the larger time series and determines the point where the distance value between

the two time series is minimized; and (iii) subsequence to subsequence comparison: the

distance measure considers subsequences of the time series. In each of the three scenarios,

distortions in the time series can affect the computation of the distance value and, therefore,

make similar time series appear as dissimilar. Next, we review the most common distortions

in time series.

2.2 Time-Series Invariances

Based on the domain, time series sequences are often distorted in some way, and distance

measures need to satisfy a number of invariances in order to compare sequences meaning-

fully. In this section, we review common time-series distortions and their invariances.

Scaling and translation invariances: In many cases, it is useful to recognize the sim-

ilarity of sequences despite differences in amplitude (scaling) and offset (translation). In

other words, transforming a sequence ~x as ~x′ = a~x+ b, where a and b are constants, should

not change ~x’s similarity to other sequences.. For example, these invariances are useful to

analyze variations in currency values on exchange markets without being biased by infla-

tion.
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Shift invariance: When two sequences are similar but differ in phase (global alignment)

or when there are regions of the sequences that are aligned and others are not (local align-

ment), we might still need to consider them similar. For example, heartbeats can be out of

phase depending on when we start taking the measurements (global alignment) and hand-

writings of a phrase from different people will need alignment depending on the size of the

letters and on the spaces between words (local alignment).

Uniform scaling invariance: Sequences that differ in length require either stretching of

the shorter sequence or shrinking of the longer sequence so that we can compare them effec-

tively. For example, this is useful for heartbeats recorded in periods of different duration.

Occlusion invariance: When subsequences are missing, we can still compare the se-

quences by ignoring the subsequences that do not match well. This invariance is useful in

handwritings if there is a typo or a letter is missing.

Complexity invariance: When sequences have similar shape but different complexities,

we might want to make them have low or high similarity based on the application. For ex-

ample, audio signals that were recorded indoors and outdoors might be considered similar,

despite the fact that outdoor signals will be more noisy than indoor signals.

For many tasks, some or all of the above invariances are required when we compare

time-series sequences. To satisfy the appropriate invariances, we could preprocess the data

to eliminate the corresponding distortions. For example, by z-normalizing [Goldin and

Kanellakis, 1995] the data we can achieve the scaling and translation invariances. However,

for invariances that cannot be trivially achieved with a preprocessing step, we can define

sophisticated distance measures that offer distortion invariances. Next, we review the most

common such distance measures.

2.3 Time-Series Distance Measures

The two state-of-the-art approaches for time-series comparison first z-normalize the se-

quences and then use a distance measure to determine their similarity, and possibly cap-
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ture more invariances. The most widely used distance metric is the simple Euclidean dis-

tance (ED) [Faloutsos et al., 1994]. ED compares two time series ~x = (x1, . . . ,xm) and

~y = (y1, . . . ,ym) of length m as follows:

ED(~x,~y) =
√∑m

i=1
(xi−yi)2 (2.1)

Another popular distance measure is Dynamic Time Warping (DTW) [Sakoe and Chiba,

1978]. DTW can be seen as an extension of ED that offers a local (non-linear) alignment.

To achieve that, an m-by-m matrix M is constructed, with the ED between any two points

of ~x and ~y. A warping path W = {w1,w2, . . . ,wk}, with k ≥m, is a contiguous set of matrix

elements that defines a mapping between ~x and ~y under several constraints [Keogh and

Ratanamahatana, 2005]:
DTW (~x,~y) = min

√∑k

i=1
wi (2.2)

This path can be computed on matrix M with dynamic programming for the evaluation of

the following recurrence:

γ(i, j) = ED(i, j) + min{γ(i−1, j−1),γ(i−1, j),γ(i, j−1)}.

It is common practice to constrain the warping path to visit only a subset of cells on matrix

M . The shape of the subset matrix is called band and the width of the band is called

warping window. The most frequently used band for constrained Dynamic Time Warping

(cDTW) is the Sakoe-Chiba (SC) band [Sakoe and Chiba, 1978]. Figure 2.1a shows the

difference in alignments of two sequences offered by ED and DTW, whereas Figure 2.1b

presents the warping path (dark cells) for cDTW constrained by the SC band with width 5

cells (light cells).

Recently, Wang et al. [Wang et al., 2013] extensively evaluated 9 distance measures and

several variants thereof. They found that ED is the most efficient measure with a reasonably

high accuracy, and that DTW and cDTW perform exceptionally well in comparison to other

measures. cDTW is slightly better than DTW and significantly reduces the computation

time. Several optimizations have been proposed to further speed up cDTW [Rakthanmanon
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(a) (b)
Figure 2.1: Similarity computation: (a) alignment under ED (top) and DTW (bottom), (b)
Sakoe-Chiba band with a warping window of 5 cells (light cells in band) and the warping
path computed under cDTW (dark cells in band).
et al., 2012]. In Chapter 3, we propose the use of an alternative distance measure that is

as accurate as cDTW, but significantly faster.

Considering that dimensionality reduction techniques can extract features that preserve

the characteristics of the time series and, subsequently, distance measures can operate over

the time series of reduced dimensionality, we review such time-series representations in the

next section.

2.4 Time-Series Representations

Apart from the choice of distance measure, another important aspect for effective compar-

ison of time series is the choice of representation method. Time series are high-dimensional

data and manipulation of time series in their raw format can lead to inefficient approaches

due to computation and storage requirements. Instead of working directly with time series

in their raw format, dimensionality reduction methods can extract features that preserve

the characteristics of the time series while significantly reducing their dimensionality. Apart

from the direct benefits of manipulating time series in reduced dimensionality, such as com-

putation speedup and storage reduction, time-series representation methods can also remove

noise from time series, increase the accuracy of certain tasks, and allow more effective in-

dexing.

Since the debut of the GEMINI framework [Agrawal et al., 1993; Faloutsos et al.,
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1994], research on representation methods has focused on exploring trade-offs between low-

dimensional representations, such as reconstructing quality, sensitivity to noise, compact-

ness, and computational cost. Depending on the transformation applied to time series and

on the output format, we divide representation methods into data-agnostic and data-aware

methods and into numeric and symbolic methods [Esling and Agon, 2012].

Data-agnostic methods: The most popular representations rely on spectral decomposi-

tions. Specifically, the GEMINI framework represented time series as a set of sinusoidal co-

efficients using the DFT [Agrawal et al., 1993; Faloutsos et al., 1994]. Subsequently, dozens

of methods were proposed to replace the sinusoidal functions, including the Discrete Cosine

Transform (DCT) [Korn et al., 1997], the Discrete Wavelet Transform (DWT) [Chan and Fu,

1999], Daubechies wavelets [Popivanov and Miller, 2002], Haar wavelets [Chan et al., 2003],

Coiflets [Shasha and Zhu, 2004], and Chebychev polynomials [Cai and Ng, 2004]. More spe-

cific to time series, the Piecewise Aggregate Approximation (PAA) [Yi and Faloutsos, 2000;

Keogh et al., 2001a] represents time series as mean values of time-series segments.

Data-aware methods: In contrast to data-agnostic methods, data-aware methods tune

transformation parameters on available data to improve their effectiveness. For example,

data-aware methods relying on spectral decompositions select a subset of DFT [Vlachos

et al., 2004] or DWT [Struzik and Siebes, 1999] coefficients. A data-aware version of PAA

uses vector quantization to construct a codebook of segments [Megalooikonomou et al., 2004;

Megalooikonomou et al., 2005], whereas other approaches, namely, Piecewise Linear Ap-

proximation (PLA) [Shatkay and Zdonik, 1996] and Adaptive Piecewise Constant Approx-

imation (APCA) [?], fit a polynomial model or use a constant approximation for each

segment, respectively. Linear dimensionality reduction methods, such as SVD and PCA,

are also inherently data-aware methods proposed to represent time series [Korn et al., 1997;

Ravi Kanth et al., 1998].

Symbolic methods: The output of all previous methods is numeric. Symbolic methods

additionally quantize the numeric output. For example, the Symbolic Aggregate approXi-

mation (SAX) [Lin et al., 2003] and the Symbolic Fourier Approximation (SFA) [Schäfer and
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Högqvist, 2012] rely on alphabets to transform PAA and DFT representations, respectively,

into short words.

Despite the abundance of time-series representation methods, existing approaches can-

not preserve similarities between time series under important invariances (e.g., shifting and

warping) and, therefore, sacrifice effectiveness for efficiency. In Chapter 4, we present a

numeric representation method to address the problem of representation learning that pre-

serves the properties of any given distance measure.

Time-series representation methods, along with distance measures discussed earlier, are

critical components of time-series analysis techniques that we discuss next.

2.5 Time-Series Tasks

In time-series analysis, the objective is to apply data mining algorithms to discover and

extract previously unknown information in time series. Clustering and classification of

time series are two of the most common tasks in time-series analysis. The aim of clustering

[Warren Liao, 2005] is to partition time series into groups based on some notion of similarity

in order to extract patterns and correlations. Usually, the correct number of partitions is

unknown in advance and labels are not available to guide the partition process (i.e., this

is an unsupervised learning scenario). In Chapter 3, we address the problem of time-series

clustering and we present two efficient and scalable algorithms that significantly outperform

prior state-of-the-art methods. The aim of classification [Bagnall et al., 2016] is to predict

the categories of previously unseen time series based on a model learnt for each category.

In contrast to clustering, the number of categories are known and examples of time series

exist for each category (i.e., this is a supervised learning scenario). In Chapter 4, we

address the problem of time-series classification and we present a unified framework to

learn representations and efficiently classify time series. Other tasks include motif discovery

(i.e., extraction of frequently occurring patterns in time series) [Chiu et al., 2003], discord

discovery (i.e., extraction of abnormal patterns) [Keogh et al., 2005], and prediction (i.e.,
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forecasting future values after observation of existing values in time series) [Chatfield, 2000]

in time series.
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Chapter 3

Efficient and Accurate Time-Series

Clustering

In Chapter 2, we described the necessary background for time-series analysis. In this chap-

ter, we exploit that background and focus on the problem of time-series clustering. Clus-

tering, the partitioning of data into groups based on some notion of similarity, is one of the

first and still one of the most popular data mining tasks. Despite the plethora of clustering

methods, a particular method, namely the k-means algorithm [MacQueen, 1967], has been

recognized as one of the most influential data mining algorithms of all times [Wu et al.,

2008] due to its simplicity, efficiency, and wide applicability. Unfortunately, k-means is

not suitable for time-series clustering, as we will see. Our goal is to develop novel cluster-

ing methods that build on the same successful principles of k-means but are suitable for

time-series clustering. First, we provide an overview and motivation for this task (Section

3.1). Second, we describe relevant theoretical background and review existing approaches

for time-series clustering and time-series averaging (Section 3.2). Third, we present our

time-series clustering algorithms (Section 3.3). Then, we exploit time-series clustering to

accelerate one-nearest-neighbor classification algorithms (Section 3.4) and summarize our

extensive experimental evaluation (Sections 3.5 and 3.6). Finally, we conclude with the

contributions of this chapter (Section 3.7).
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Figure 3.1: ECG sequence examples and types of alignments for the two classes of the
ECGFiveDays dataset [Keogh et al., 2015].

3.1 Overview and Motivation

Among all techniques applied to time-series sequences, clustering is one of the most widely

used as it does not rely on costly human supervision or time-consuming annotation of data.

With clustering, we can identify and summarize interesting patterns and correlations in

the underlying data [Halkidi et al., 2001]. In the last few decades, clustering of time-series

sequences has received significant attention [Bagnall and Janacek, 2004; Das et al., 1998;

Gavrilov et al., 2000; Li et al., 1998; Oates, 1999; Petitjean et al., 2011; Rakthanmanon

et al., 2011; Yang and Leskovec, 2011; Zakaria et al., 2012], not only as a powerful standalone

exploratory method, but also as a preprocessing step or subroutine for other tasks.

Most time-series analysis techniques, including clustering, critically depend on the choice

of distance measure. A key issue when comparing two time-series sequences is how to handle

the variety of distortions, as we discussed (see Section 2.2), that are characteristic of the

sequences. To illustrate this point, consider the well-known ECGFiveDays dataset [Keogh

et al., 2015], with ECG sequences recorded for the same patient on two different days. While

the sequences seem similar overall, they exhibit patterns that belong in one of two distinct

classes (see Figure 3.1): Class A is characterized by a sharp rise, a drop, and another gradual

increase while Class B is characterized by a gradual increase, a drop, and another gradual

increase. Ideally, a shape-based clustering method should generate a partition similar to



CHAPTER 3. EFFICIENT AND ACCURATE TIME-SERIES CLUSTERING 25

the classes shown in Figure 3.1, where sequences exhibiting similar patterns are placed into

the same cluster based on their shape similarity, regardless of differences in amplitude and

phase. As the notion of shape cannot be precisely defined, dozens of distance measures have

been proposed [Chen and Ng, 2004; Chen et al., 2005; Chen et al., 2007b; Ding et al., 2008;

Faloutsos et al., 1994; Frentzos et al., 2007; Morse and Patel, 2007; Stefan et al., 2013;

Vlachos et al., 2002; Wang et al., 2013] to offer invariances to multiple inherent distortions

in the data. However, it has been shown that distance measures offering invariances to

amplitude and phase perform exceptionally well [Ding et al., 2008; Wang et al., 2013] and,

hence, such distance measures are used for shape-based clustering [Meesrikamolkul et al.,

2012; Niennattrakul and Ratanamahatana, 2009; Petitjean et al., 2011; Yang and Leskovec,

2011].

Due to these difficulties and the different needs for invariances from one domain to an-

other, more attention has been given to the creation of new distance measures rather than to

the creation of new clustering algorithms. It is generally believed that the choice of distance

measure is more important than the clustering algorithm itself [Batista et al., 2014]. As

a consequence, time-series clustering relies mostly on classic clustering methods, either by

replacing the default distance measure with one that is more appropriate for time series,

or by transforming time series into “flat” data so that existing clustering algorithms can

be directly used [Warren Liao, 2005]. However, the choice of clustering method can affect:

(i) accuracy, as every method expresses homogeneity and separation of clusters differently;

and (ii) efficiency, as the computational cost differs from one method to another. For exam-

ple, spectral clustering [Filippone et al., 2008] or certain variants of hierarchical clustering

[Kaufman and Rousseeuw, 2009] are more appropriate to identify density-based clusters

(i.e., areas of higher density than the remainder of the data) than partitional methods such

as k-means [MacQueen, 1967] or k-medoids [Kaufman and Rousseeuw, 2009]. On the other

hand, k-means is more efficient than hierarchical, spectral, or k-medoids methods.

Unfortunately, state-of-the-art approaches for shape-based clustering, which use parti-

tional methods with distance measures that are scale- and shift-invariant, suffer from two
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main drawbacks: (i) these approaches cannot scale to large volumes of data as they depend

on computationally expensive methods or distance measures [Meesrikamolkul et al., 2012;

Niennattrakul and Ratanamahatana, 2009; Petitjean et al., 2011; Yang and Leskovec, 2011];

(ii) these approaches have been developed for particular domains [Yang and Leskovec, 2011]

or their effectiveness has only been shown for a limited number of datasets [Meesrikamolkul

et al., 2012; Niennattrakul and Ratanamahatana, 2009]; and (iii) these approaches are sen-

sitive to outliers and noise as they do not take into consideration the proximity and spatial

distribution of time series. Moreover, the most successful shape-based clustering methods

handle phase invariance through a local, non-linear alignment of the sequence coordinates,

even though a global, linear alignment is often adequate and in certain cases more accurate.

For example, for the ECG dataset in Figure 3.1, an efficient linear drift can reveal the

underlying differences in patterns of sequences of two classes, whereas an expensive non-

linear alignment attempts to match every corresponding increase or drop of each sequence,

making it difficult to distinguish the two classes (see Figure 3.1). Importantly, in contrast

to linear alignment, the effectiveness of non-linear alignments might degrade for time series

with large variability in their prefix and suffix coordinates [Silva et al., 2016].

Despite the advantages of the simple linear alignment, starting with the application

of DTW decades ago [Berndt and Clifford, 1994], research on the problem of time-series

comparison focused on elastic distance measures that offer non-linear alignment [Chen and

Ng, 2004; Chen et al., 2005; Keogh and Ratanamahatana, 2005; Morse and Patel, 2007;

Vlachos et al., 2002]. Interestingly, independent experimental evaluations of state-of-the-

art distance measures for time-series comparison — 9 measures and their variants in [Ding

et al., 2008; Wang et al., 2013] and 48 measures in [Giusti and Batista, 2013] — did not

consider distance measures offering global linear alignment. Our goal is to develop shape-

based clustering methods that handle the phase invariance through a global linear alignment

and, subsequently, perform an extensive evaluation against other shape-based clustering

methods, against other partitional methods, and against different clustering approaches,

such as hierarchical or spectral methods.
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In this chapter, we propose k-Shape and k-MS, two novel algorithms for shape-based

time-series clustering that are efficient and domain independent. k-Shape and k-MS are

based on a scalable iterative refinement procedure similar to the one used by the k-means

algorithm, but with significant differences. Specifically, k-Shape and k-MS use both a dif-

ferent distance measure and a different method for centroid computation from those of

k-means. As argued above, k-Shape and k-MS attempt to preserve the shapes of time

series while comparing them. Furthermore, k-MS also considers the proximity and spatial

distribution of time series. To do so, k-Shape and k-MS require a distance measure that is in-

variant to scaling and shifting. Unlike other clustering methods [Meesrikamolkul et al., 2012;

Petitjean et al., 2011; Yang and Leskovec, 2011], we adapt the cross-correlation measure and

we show: (i) how we can derive in a principled manner a time-series distance measure that is

scale- and shift-invariant; and (ii) how this distance measure can be computed efficiently by

exploiting intrinsic characteristics of Fourier transform algorithms. Based on the properties

of this normalized version of cross-correlation, namely, SBD, we develop ShapeExtraction

(SE) and MultiShapesExtraction (MSE), two novel methods to compute cluster centroids,

which are used in every iteration to update the assignment of time series to clusters. k-

Shape relies on SE to compute a single centroid per cluster based on the entire set of time

series in each cluster. In contrast, k-MS relies on MSE to compute multiple centroids per

cluster in order to consider the proximity and spatial distribution of time series in each

cluster.

To demonstrate the effectiveness of SBD, k-Shape, and k-MS we have conducted an ex-

tensive experimental evaluation over 85 datasets and compared the state-of-the-art distance

measures and clustering approaches for time series using rigorous statistical analysis. We

took steps to ensure the reproducibility of our results, including making available our source

code as well as using public datasets. Specifically, our results show that SBD is competitive,

outperforming ED [Faloutsos et al., 1994], and achieving similar accuracy as cDTW [Sakoe

and Chiba, 1978], one of the best performing distance measures [Wang et al., 2013], without

requiring any tuning and performing significantly faster. Interestingly, our results further
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suggest that only the supervised tuning of cDTW leads to significant improvements in clas-

sification accuracy of cDTW over the unconstrained Dynamic Time Warping (DTW). In

contrast, DTW outperforms cDTW in clustering accuracy, which contradicts the belief that

cDTW generally improves the accuracy of DTW.

For time-series clustering, we show that the k-means algorithm with ED, in contrast

to what has been reported in the literature, is a robust approach and that inadequate

modifications of the distance measure and the centroid computation can reduce its per-

formance. Our results suggest that partitional methods outperform hierarchical, spectral,

density-based, and shapelet-based methods with the most competitive distance measures.

These results indicate that the choice of algorithm, which is sometimes believed to be less

important than that of distance measure, is as critical as the choice of distance measure.

Similarly, we show that key characteristics of the clustering methods, such as the linkage

criterion in hierarchical clustering, can significantly affect the accuracy of the clustering

results, whereas the choice of distance measure is many times less important.

Our extensive experimental evaluation shows that k-Shape outperforms all scalable and

non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based methods

in terms of accuracy, with the only exception of one existing approach that achieves sim-

ilar accuracy results, namely, k-medoids with cDTW. However, there are problems with

this approach that can be avoided with k-Shape: (i) the requirement of k-medoids to com-

pute the dissimilarity matrix makes it unable to scale and particularly slow, two orders of

magnitude slower than k-Shape; (ii) its distance measure requires tuning, either through

automated methods that rely on labeling of instances or through the help of a domain

expert; this requirement is problematic for clustering, which is an unsupervised task. In

contrast, k-Shape uses a parameter-free and efficient distance measure. Overall, k-Shape is

a scalable — yet accurate — choice for time-series clustering that achieve state-of-the-art

performance across different domains and is particularly effective for applications involving

similar but out-of-phase sequences.

k-MS behaves similarly to k-Shape in comparison to scalable and non-scalable rival
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methods but, importantly, k-MS is significantly more accurate than k-Shape on datasets

with large variance in the proximity and spatial distribution of time series. Therefore, k-MS

is suitable to cluster time series in the presence of outliers and noise.

Overall, k-Shape and k-MS are scalable — yet accurate — choices for time-series cluster-

ing that achieve state-of-the-art performance across different domains and are particularly

effective for applications involving similar but out-of-phase sequences. In addition to our

clustering results, and inspired by the work by [Petitjean et al., 2014; Petitjean et al., 2016],

we show how k-Shape can also lead to efficient techniques for other related time-series

tasks. Specifically, in this chapter we show that we can rely on k-Shape as a subroutine to

effectively reduce the search space for one-nearest-neighbor time-series classification algo-

rithms. Later, in Chapter 4, we exploit the cluster centroids of k-Shape as landmark time

series to efficiently learn representations by expressing time series as a linear combination

of landmark time series.

We start with a review of the state of the art for clustering time series, as well as with

a precise definition of our problem of focus (Section 3.2). We continue as follows:

• We show how to derive SBD, a scale-, translate-, and shift-invariant distance measure,

in a principled manner from cross-correlation and how to efficiently compute this

measure by exploiting intrinsic characteristics of Fourier transform algorithms (Section

3.3.1).

• We present two novel methods to compute a single centroid or multiple centroids per

cluster when the SBD distance measure is used (Section 3.3.2).

• We develop k-Shape and k-MS, two algorithms for time-series clustering (Section

3.3.3).

• We present NSC, a one-nearest-neighbor classification algorithm that relies on k-

Shape as subroutine to reduce the search space of one-nearest-neighbor algorithms

(Section 3.4).
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• We perform an extensive experimental evaluation of our ideas (Sections 3.5 and 3.6).

Finally, we conclude and discuss the implications of our work (Section 3.7). The material

described in this chapter appears in [Paparrizos and Gravano, 2015; Paparrizos and Gravano,

2016; Paparrizos and Gravano, 2017].

We now review necessary background and define our problem of focus in this chapter.

3.2 Preliminaries

In this section, we first review the relevant theoretical background (Section 3.2.1). Later,

we summarize existing approaches for clustering time-series data (Section 3.2.2) and for

centroid computation (Section 3.2.3). Then, we formally present our problem of focus

(Section 3.2.4).

3.2.1 Theoretical Background

Clustering is the general problem of partitioning n observations into k clusters, where a

cluster is characterized with the notions of homogeneity — the similarity of observations

within a cluster — and separation — the dissimilarity of observations from different clus-

ters. Even though many clustering criteria to capture homogeneity and separation have

been proposed [Hansen and Jaumard, 1997], the minimum within-cluster sum of squared

distances is most commonly used as it expresses both of them. Given a set of n observa-

tions X = {~x1, . . . ,~xn}, where ~xi ∈Rm, and the number of clusters k < n, the objective is to

partition X into k pairwise-disjoint clusters P = {p1, . . . ,pk}, such that the within-cluster

sum of squared distances is minimized:

P ∗ = argmin
P

k∑
j=1

∑
~xi∈pj

dist(~xi,~cj)2 (3.1)

where ~cj is the centroid of partition pj ∈P . In Euclidean space this is an NP-hard optimiza-

tion problem for k ≥ 2 [Aloise et al., 2009], even for number of dimensions m= 2 [Mahajan
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et al., 2009]. Because finding a global optimum is difficult, heuristics such as the k-means

method [MacQueen, 1967] are often used to find a local optimum. Specifically, k-means

randomly assigns the data points into k clusters and then uses an iterative procedure that

performs two steps in every iteration: (i) in the assignment step, every data point is as-

signed to the cluster of its nearest centroid, which is determined with the use of a distance

function; (ii) in the refinement step, the centroids of the clusters are updated to reflect the

changes in cluster memberships. The algorithm converges either when there is no change

in cluster memberships or when the maximum number of iterations is reached.

In the refinement step, k-means computes new centroids to serve as representatives of

the clusters. The centroid is defined as the data point that minimizes the sum of squared

distances to all other data points and, hence, it depends on the distance measure used. Find-

ing such a centroid is known as the Steiner’s sequence problem [Petitjean and Gançarski,

2012]: given a partition pj ∈ P , the corresponding centroid ~cj needs to fulfill:

~cj = argmin
~w

∑
~xi∈pj

dist(~w,~xi)2, ~w ∈ Rm (3.2)

When ED is used, the centroid can be computed with the arithmetic mean property [Dim-

itriadou et al., 2002]. In many cases where alignment of observations is required, this

problem is referred to as the multiple sequence alignment problem, which is known to be

NP-complete [Wang and Jiang, 1994]. In the context of time series, Dynamic Time Warping

(DTW) (see Section 2.3) is the most widely used measure to compare time-series sequences

with alignment, and many heuristics have been proposed to find the average sequence under

DTW (see Section 3.2.3).

3.2.2 Time-Series Clustering Algorithms

Several methods have been proposed to cluster time series. All approaches generally modify

existing algorithms, either by replacing the default distance measures with a version that

is more suitable for comparing time series (raw-based methods), or by transforming the
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sequences into “flat” data so that they can be directly used in classic algorithms (feature-

and model-based methods) [Warren Liao, 2005]. Raw-based approaches can easily leverage

the vast literature on distance measures (see Section 2.3), which has shown that invariances

offered by certain measures, such as DTW, are general and, hence, suitable for almost every

domain [Ding et al., 2008]. In contrast, feature- and model-based approaches are usually

domain-dependent and applications on different domains require that we modify the features

or models. Because of these drawbacks of feature- and model-based methods, in this chapter

we follow a raw-based approach.

The four most popular raw-based methods are agglomerative hierarchical, spectral,

density-based, and partitional clustering [Batista et al., 2014; Warren Liao, 2005]. For

hierarchical clustering, the most widely used “linkage” criteria are the single, average, and

complete linkage variants [Kaufman and Rousseeuw, 2009]. Spectral clustering [Ng et al.,

2002] has recently started receiving attention [Batista et al., 2014] due to its success over

other types of data [Filippone et al., 2008]. Similarly, density-based clustering [Ester et al.,

1996] has gained popularity due to its ability to handle outliers in datasets [Begum et al.,

2015]. Among partitional methods, k-means [MacQueen, 1967] and k-medoids [Kaufman

and Rousseeuw, 2009] are the most representative examples. When partitional methods use

distances that offer invariances to scaling, translation, and shifting, we consider them as

shape-based approaches. From these methods, k-medoids is usually preferred [Warren Liao,

2005]: unlike k-means, k-medoids computes the dissimilarity matrix of all data sequences

and uses actual sequences as cluster centroids; in contrast, k-means requires the compu-

tation of artificial sequences as centroids, which hinders the easy adaptation of distance

measures other than ED. However, from all these methods, only the k-means class of algo-

rithms can scale linearly with the size of the datasets. Recently, k-means was modified to

work with: (i) DTW [Petitjean et al., 2011] and (ii) a distance that offers pairwise scaling

and shifting of sequences [Yang and Leskovec, 2011]. Both of these modifications rely on

new approaches to compute cluster centroids that we will review next.
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3.2.3 Time-Series Averaging Techniques

The computation of an average sequence or, in the context of clustering, a centroid, is a

difficult task and it critically depends on the distance measure used to compare time series.

We now review the state-of-the-art methods for the computation of an average sequence.

With ED, the property of arithmetic mean is used to compute an average sequence (e.g.,

as is the case in the centroid computation of k-means). However, as DTW is more appropri-

ate for many time-series tasks [Keogh and Ratanamahatana, 2005; Rakthanmanon et al.,

2012], several methods have been proposed to average sequences under DTW. Nonlinear

alignment and averaging filters (NLAAF) [Gupta et al., 1996] uses a simple pairwise method

where each coordinate of the average sequence is calculated as the center of the mapping

produced by DTW. This method is applied sequentially to pairs of sequences until only one

pair is left. Prioritized shape averaging (PSA) [Niennattrakul and Ratanamahatana, 2009]

uses a hierarchical method to average sequences. The coordinates of an average sequence

are computed as the weighted center of the coordinates of two time-series sequences that

were coupled by DTW. Initially, all sequences have weight one, and each average sequence

produced in the nodes of the tree has a weight that corresponds to the number of sequences

it averages. To avoid the high computation cost of previous approaches, Ranking Shape-

based Template Matching Framework (RSTMF) [Meesrikamolkul et al., 2012] approximates

an ordering of the time-series sequences by looking at the distances of sequences to all other

cluster centroids, instead of computing the distances of all pairs of sequences.

Several drawbacks of these methods have led to the creation of a more robust tech-

nique called Dynamic Time Warping Barycenter Averaging (DBA) [Petitjean et al., 2011],

which iteratively refines the coordinates of a sequence initially picked from the data. Each

coordinate of the average sequence is updated with the use of barycenter of one or more

coordinates of the other sequences that were associated with the use of DTW. Among all

these methods, DBA seems to be the most efficient and accurate averaging approach when

DTW is used [Petitjean et al., 2011]. Another averaging technique that is based on matrix

decomposition was proposed as part of K-Spectral Centroid Clustering (KSC) [Yang and
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Leskovec, 2011], to compute the centroid of a cluster when a distance measure for pairwise

scaling and shifting is used. In our approach, which we will present in Section 3.3, we also

rely on matrix decomposition to compute centroids.

3.2.4 Problem Definition

We address the problem of domain-independent, accurate, and scalable clustering of time

series into k clusters, for a given value of the target number of clusters k.1 Even though

different domains might require different invariances to data distortions (see Section 2.2), we

focus on distance measures that offer invariances to scaling and shifting, which are generally

sufficient (see Section 2.3) [Ding et al., 2008]. Furthermore, to easily adopt such distance

measures, we focus our analysis on raw-based clustering approaches, as we argued in Section

3.2.2. Next, we introduce k-Shape and k-MS, our novel time-series clustering algorithms.

3.3 Shape-based Clustering of Time Series

Our objective is to develop a domain-independent, accurate, and scalable algorithm for

time-series clustering with a distance measure that is invariant to scaling and shifting.

In this section, we first discuss our distance measure, namely, SBD, which is based on

cross-correlation (Section 3.3.1). Based on SBD, we then present two methods to compute

centroids of time-series clusters (Section 3.3.2). Finally, we propose k-Shape and k-MS,

two novel clustering algorithms that rely on an iterative refinement procedure that scales

linearly in the number of sequences and generates homogeneous and well-separated clusters

(Section 3.3.3).

3.3.1 Time-Series Shape Similarity

Capturing shape-based similarity requires measures that can handle distortions in ampli-

tude and phase. Unfortunately, the best performing measures offering invariances to these

1Although the estimation of k is difficult without a gold standard, we can do so by varying k and evaluating
clustering quality with criteria to capture information intrinsic to the data [Kaufman and Rousseeuw, 2009].
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distortions, such as DTW, are computationally expensive (see Section 2.3). To circumvent

this efficiency limitation, we adapt a normalized version of cross-correlation.

Cross-correlation is a measure of similarity that compares points of time-lagged sig-

nals one-to-one. Cross-correlation is widely used in signal processing to compare sequences

that differ in phase (global alignment). In contrast, DTW is a measure that is able to

compare regions of sequences (local alignment). After DTW [Berndt and Clifford, 1994],

research on the problem of time-series comparison has mostly focused on elastic measures

that compare one-to-many or one-to-none points [Chen and Ng, 2004; Chen et al., 2005;

Keogh and Ratanamahatana, 2005; Morse and Patel, 2007; Vlachos et al., 2002; Wang et al.,

2013]. Therefore, the relative performance of elastic measures against cross-correlation re-

mains largely unexplored. Different needs from one domain or application to another hin-

der the process of finding appropriate normalizations for the data and the cross-correlation

measure. Moreover, inefficient implementations of cross-correlation can make it particularly

slow. In the rest of this section, we show how to address these drawbacks. Specifically, we

show how to choose normalizations that are domain-independent and efficient, and lead to

a shape-based distance for comparing time series efficiently and effectively.

Cross-correlation: Cross-correlation is a measure with which we can determine the sim-

ilarity of two sequences ~x= (x1, . . . ,xm) and ~y = (y1, . . . ,ym), even if they are not properly

aligned.2 To achieve shift-invariance, cross-correlation keeps ~y static and slides ~x over ~y to

compute their inner product for each shift s of ~x. We denote a shift of a sequence as follows:

~x(s) =


(
|s|︷ ︸︸ ︷

0, . . . ,0,x1,x2, . . . ,xm−s), s≥ 0

(x1−s, . . . ,xm−1,xm,0, . . . ,0︸ ︷︷ ︸
|s|

), s < 0
(3.3)

When all possible shifts ~x(s) are considered, with s ∈ [−m,m], we produce CCw(~x,~y) =

2For simplicity, we consider sequences of equal length even though cross-correlation can be computed on
sequences of different length.
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(c1, . . . , cw), the cross-correlation sequence with length 2m−1, defined as follows:

CCw(~x,~y) =Rw−m(~x,~y), w ∈ {1,2, . . . ,2m−1} (3.4)

where Rw−m(~x,~y) is computed, in turn, as:

Rk(~x,~y) =


m−k∑
l=1

xl+k ·yl, k ≥ 0

R−k(~y,~x), k < 0
(3.5)

Our goal is to compute the position w at which CCw(~x,~y) is maximized. Based on this

value of w, the optimal shift of ~x with respect to ~y is then ~x(s), where s=m−w.

Depending on the domain or the application, different normalizations for CCw(~x,~y)

might be required. The most common normalizations are the biased estimator, NCCb, the

unbiased estimator, NCCu, and the coefficient normalization, NCCc, defined as follows:

NCCq(~x,~y) =



CCw(~x,~y)
m , q = “b” (NCCb)

CCw(~x,~y)
m−|w−m| , q = “u” (NCCu)

CCw(~x,~y)√
R0(~x,~x)·R0(~y,~y)

, q = “c” (NCCc)

(3.6)

Beyond the cross-correlation normalizations, time series might also require normalization

to remove inherent distortions. Figure 3.2 illustrates how the cross-correlation normaliza-

tions for two sequences ~x and ~y of lengthm= 1024 are affected by time-series normalizations.

(Appendix A elaborates on the classification accuracy of cross-correlation variants under

other time-series normalizations.) Independently of the normalization applied to CCw(~x,~y),

the produced sequence will have length 2047. Initially, in Figure 3.2a, we remove differences

in amplitude by z-normalizing ~x and ~y in order to show that they are aligned and, hence,

no shifting is required. If CCw(~x,~y) is maximized for w ∈ [1025,2047] (or w ∈ [1,1023]), the

~x sequence should be shifted by w−1024 to the left (or 1024−w to the right). Otherwise,
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Figure 3.2: Time-series and cross-correlation normalizations.

if w = 1024, ~x and ~y are properly aligned, which is what we expect in our example. Fig-

ure 3.2b shows that if we do not z-normalize ~x and ~y, and we use the biased estimator,

then NCCb is maximized at w = 1797, which indicates a shifting of the ~x sequence to the

left 1797− 1024 = 773 times. If we z-normalize ~x and ~y, and use the unbiased estimator,

then NCCu is maximized at w = 1694, which indicates a shifting of the ~x sequence to the

left 1694−1024 = 670 times (Figure 3.2c). Finally, if we z-normalize ~x and ~y, and use the

coefficient normalization, then NCCc is maximized at w = 1024, which indicates that no

shifting is required (Figure 3.2d).

As illustrated by the example above, normalizations of the data and the cross-correlation

measure can have a significant impact on the cross-correlation sequence produced, which

makes the creation of a distance measure a non-trivial task. Furthermore, as we have seen

in Figure 3.2, cross-correlation sequences produced by pairwise comparisons of time series

will differ in amplitude based on the normalizations. Thus, a normalization that produces

values within a specified range should be used in order to meaningfully compare such se-

quences.

Shape-based distance (SBD): To devise a shape-based distance measure, and based on



CHAPTER 3. EFFICIENT AND ACCURATE TIME-SERIES CLUSTERING 38

the previous discussion, we use the coefficient normalization that gives values between −1

and 1, regardless of the data normalization. Coefficient normalization divides the cross-

correlation sequence by the geometric mean of autocorrelations of the individual sequences.

After normalization of the sequence, we detect the position w where NCCc(~x,~y) is maxi-

mized and we derive the following distance measure:

SBD(~x,~y) = 1−max
w

(
CCw(~x,~y)√

R0(~x,~x) ·R0(~y,~y)

)
(3.7)

which takes values between 0 to 2, with 0 indicating perfect similarity for time series.

Up to now we have addressed shift invariance. For scaling invariance, we transform each

sequence ~x into ~x′ = ~x−µ
σ , so that its mean µ is zero and its standard deviation σ is one.

Efficient computation of SBD: From Equation 3.4, the computation of CCw(~x,~y) for

all values of w requires O(m2) time, where m is the time-series length. The convolution

theorem [Katznelson, 2004] states that the convolution of two time series can be computed

as the Inverse Discrete Fourier Transform (IDFT) of the product of the individual Discrete

Fourier Transforms (DFT) of the time series, where DFT is:

F(xk) =
|~x|−1∑
r=0

xre
−2jrkπ
|~x| , k = 0, . . . , |~x|−1 (3.8)

and IDFT is:
F−1(xr) = 1

|~x|

|~x|−1∑
k=0
F(xk)e

2jrkπ
|~x| , r = 0, . . . , |~x|−1 (3.9)

where j =
√
−1. Cross-correlation is then computed as the convolution of two time series if

one sequence is first reversed in time, ~x(t) = ~x(−t) [Katznelson, 2004], which equals taking

the complex conjugate (represented by ∗) in the frequency domain. Thus, Equation 3.4 can

be computed for every m as:

CC(~x,~y) = F−1{F(~x)∗F(~y)} (3.10)

However, DFT and IDFT still require O(m2) time. By using a Fast Fourier Transform

(FFT) algorithm [Cooley and Tukey, 1965], the time reduces to O(m · log(m)). Data and
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Algorithm 1: [dist,y′] = SBD(x ,y)
Input: Two z-normalized sequences x and y
Output: Dissimilarity dist of x and y

Aligned sequence y′ of y towards x
1 length= 2nextpower2(2∗length(x)−1)

2 CC = IFFT{FFT (x , length)∗FFT (y, length)} // Equation 3.10
3 NCCc = CC

||x|| ||y|| // Equation 3.6
4 [value, index ] = max(NCCc)
5 dist = 1 − value // Equation 3.7
6 shift = index− length(x)
7 if shift ≥ 0 then
8 y′ = [zeros(1 ,shift),y(1 : end− shift)] // Equation 3.3

9 else
10 y′ = [y(1 − shift : end),zeros(1 ,−shift)] // Equation 3.3

cross-correlation normalizations can also be efficiently computed; thus the overall time com-

plexity of SBD remains O(m · log(m)). Importantly, by exploiting intrinsic characteristics

of FFT algorithms, we can further improve the performance of SBD. Specifically, recur-

sive algorithms compute an FFT by dividing it into pieces of power-of-two size [Frigo and

Johnson, 2005]. Therefore, when CC(~x,~y) is not an exact power of two we pad ~x and ~y

with zeros to reach the next power-of-two length after 2m−1. This important property of

FFT algorithms, which is not often exploited in the literature (e.g., [Mueen et al., 2014;

Zakaria et al., 2012]), leads to a significant improvement in the performance of SBD, as we

show in Section 3.6.1. Algorithm 1 outlines how this efficient and parameter-free measure

is computed in a few lines of code using modern mathematical software.

In this section, we showed effective cross-correlation and data normalizations to derive

a shape-based distance measure. Importantly, we also discussed how cross-correlation can

be efficiently computed. In our experimental evaluation (Sections 3.5 and 3.6), we will show

that SBD is highly competitive, achieving similar results to cDTW while being significantly

faster. We now turn to the critical problem of extracting cluster centroids, to represent the

cluster data consistently with the shape-based distance measure described above.
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3.3.2 Time-Series Shape Extraction

Many tasks in time-series analysis rely on methods that effectively summarize a set of

time series by a small number of sequences and, in some cases, by only one sequence.

These summary sequences are often referred to as average sequences or, in the context

of clustering, centroids. The extraction of meaningful centroids is a challenging task that

critically depends on the choice of distance measure (see Section 3.2.1). We now show how to

determine such centroids for time-series clustering for SBD, to capture shared characteristics

of the underlying data. Specifically, we present ShapeExtraction, a method that extracts

a single centroid to summarize an entire set of time series, and MultiShapesExtraction, a

method that extracts multiple centroids to summarize an entire set of time series.

ShapeExtraction (SE): The easiest way to extract an average sequence from a set of

sequences is to compute each coordinate of the average sequence as the arithmetic mean

of the corresponding coordinates of all sequences. This approach is used by k-means, the

most popular clustering method. In Figure 3.3, the solid line shows the centroid for “Class

A” in the ECGFiveDays dataset of Figure 3.1: these centroids do not offer invariances

to scaling and shifting and, therefore, such centroids do not capture effectively the class

characteristics.

To avoid such problems, we cast the centroid computation as an optimization problem

where the objective is to find the minimizer of the sum of squared distances to all other

time series sequences (Equation 3.2). However, as cross-correlation intuitively captures the

similarity — rather than the dissimilarity — of time series, we can express the computed

sequence as the maximizer µ?k of the squared similarities to all other time-series sequences.

By rewriting Equation 3.2 as a maximization problem and from Equation 3.6, we obtain:

~µk
? = argmax

~µk

∑
~xi∈Pk

NCCc(~xi, ~µk)2

= argmax
~µk

∑
~xi∈Pk

(
max
w

CCw(~xi, ~µk)√
R0(~xi, ~xi) ·R0( ~µk, ~µk)

)2

(3.11)
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Figure 3.3: Examples of “Class A” sequences of the ECGFiveDays dataset and centroids
based on the arithmetic mean property (solid lines) and our SE and MSE methods (dashed
lines).

Equation 3.11 requires the computation of an optimal shift for every ~xi ∈ Pk. As this

approach is used in the context of iterative clustering, we use the previously computed

centroid as reference and align all sequences towards this reference sequence.3

This is a reasonable choice because the previous centroid will be very close to the

new centroid. For this alignment, we use SBD, which identifies an optimal shift for every

~xi ∈ Pk. Subsequently, as sequences are already aligned towards a reference sequence before

the centroid computation, we can also omit the denominator of Equation 3.11. Then, by

combining Equations 3.4 and 3.5, we obtain:

~µk
? = argmax

~µk

∑
~xi∈Pk

 ∑
l∈[1,m]

xil ·µkl

2

For simplicity, we express this equation with vectors and assume that the ~xi sequences have

already been z-normalized to handle the differences in amplitude:

~µ?k = argmax
~µk

∑
~xi∈Pk

(~xTi ·~µk)2

= argmax
~µk

∑
~xi∈Pk

~xi
T · ~µk · ~xiT · ~µk

= argmax
~µk

~µk
T ·

∑
~xi∈Pk

(~xi · ~xiT ) · ~µk (3.12)

In the previous equation, only ~µk is not z-normalized. To handle the centering (i.e., the

3For simplicity, we consider sequences of equal length. In cases where sequences are of different length,
we first pad with zeros all sequences to reach the length of the longest sequence.
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Algorithm 2: C = SE(X ,R)
Input: X is an n-by-m matrix with z-normalized time series.

R is a 1-by-m vector with the reference sequence against which time series of X
are aligned.

Output: C is a 1-by-m vector with the centroid.
1 X ′← [ ]
2 for i ← 1 to n do
3 [dist,x ′]← SBD(R,X(i)) // Algorithm 1
4 X ′← [X ′;x ′]
5 S ←X ′T ·X ′ // S of Equation 3.13
6 Q← I − 1

m ·O // Q of Equation 3.13
7 M ←QT ·S ·Q // M of Equation 3.13
8 C ← Eig(M ,1 ) // Extract first eigenvector

subtraction of mean) of ~µk we set ~µk = ~µk ·Q, where Q= I− 1
mO, I is the identity matrix,

and O is a matrix with all ones. Furthermore, to make ~µk have unit norm, we divide

Equation 3.12 by ~µk
T · ~µk. (We omit the division with the standard deviation as such step

will not alter the results.) Finally, by substituting S for
∑

~xi∈Pk(~xi · ~xiT ), we obtain:

~µk
? = argmax

~µk

~µk
T ·QT ·S ·Q · ~µk

~µk
T · ~µk

= argmax
~µk

~µk
T ·M · ~µk
~µk
T · ~µk

(3.13)

whereM =QT ·S ·Q. Through the above transformations, we have reduced the optimization

of Equation 3.11 to the optimization of Equation 3.13, which is a well-known problem called

maximization of the Rayleigh Quotient [Golub and Van Loan, 2012]. We can find the

maximizer ~µk? as the eigenvector that corresponds to the largest eigenvalue of matrix M .

Algorithm 2 shows how we can extract the most representative shape from the underly-

ing data in a few lines of code. As a first step, SE aligns all sequences towards a reference

sequence C. Then, SE computes matrix M (as shown in Equation 3.13) and, subsequently,

extracts the primary eigenvector of M , which corresponds to the sequence with the maxi-

mum similarity to all others sequences. In Figure 3.3, we show the centroid of “Class A”

in the ECGFiveDays dataset, extracted with SE and using a randomly selected sequence

as reference sequence. SE method can more effectively capture the characteristics of “Class
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A" (Figure 3.1) than by using the arithmetic mean property (solid lines in Figure 3.3).

MultiShapesExtraction (MSE): Similarly to all averaging techniques described in Sec-

tion 3.2.3, SE is based on two important assumptions: (i) a single centroid can effectively

represent the characteristics of the underlying time series and (ii) all sequences contribute

equally to the computation of the most representative sequence. However, in practice, time

series are not uniformly distributed in space. Instead, some time series might appear in

areas of higher density than the remainder of the time series. Therefore, a single centroid

might not be sufficient to effectively capture characteristics of time series in clusters where

time series are not uniformly distributed. Additionally, noisy sequences and outliers com-

plicate the extraction of a representative sequence. Importantly, such noisy sequences and

outliers do not always appear more distant to a reference sequence than the remainder of

the sequences. Therefore, a weighted contribution of sequences in the computation of the

most representative sequence is not sufficient.

To avoid the above limitations, we present MSE, a method to extract multiple centroids

to summarize an entire set of time series. MSE relies on SE to extract each individual

centroid but with two important differences. First, during the process of alignment of

sequences towards a reference sequence, MSE computes the proximity of sequences to the

reference sequence. Second, MSE divides the time series into evenly distributed “segments”

by analyzing the proximity of sequences to a reference sequence. This division of time series

into segments leads to the computation of multiple centroids, with each centroid capturing

characteristics of segments with different proximity to the reference sequence. With this

process, MSE solves the limitations of SE discussed above: (i) dense areas that might

contain the majority of time series are now represented by multiple centroids and (ii) noisy

sequences and outliers only influence the centroids for the segments where the sequences

belong.

Algorithm 3 shows how we can extract multiple representative shapes from the un-

derlying data in a few lines of code. As a first step, MSE aligns all sequences towards a

reference sequence and computes the proximity of those sequences to the reference sequence
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Algorithm 3: C = MSE(X ,R,L)
Input: X is an n-by-m matrix with z-normalized time series.

R is a 1-by-m vector with the reference sequence against which time series of
X are aligned.

L is the desired number of centroids per cluster.
Output: C is an L-by-m matrix with the L centroids.

1 Dists← [ ]
2 X ′← [ ]
3 for i ← 1 to n do
4 [dist,x ′]← SBD(R,X(i)) // Algorithm 1
5 X ′← [X ′;x ′]
6 Dists← [Dists;dist]
7 V ← quantile(Dists,L)
8 for LIndex ← 1 to L do
9 NewX ′← []

10 for i ← 1 to n do
11 if mod(LIndex ,L) = 0 then
12 NewX ′← [NewX ′;X(i)′]
13 else
14 if Dists(i)≤ V (mod(LIndex ,L)) then
15 NewX ′← [NewX ′;X(i)′]

16 S ←NewX ′T ·NewX ′ // S of Equation 3.13
17 Q← I − 1

m ·O // Q of Equation 3.13
18 M ←QT ·S ·Q // M of Equation 3.13
19 C (LIndex)← Eig(M ,1 ) // Extract first eigenvector

(lines 3-6). MSE analyzes the proximity information and computes L quantiles that divide

the data set into L+ 1 evenly distributed segments. Vector V contains distance values

that correspond to L evenly spaced cumulative probabilities 1
L+1 ,

2
L+1 , . . . ,

L
L+1 . Then, MSE

computes centroids as follows. Each centroid cj , with j = 1, . . . ,L−1, covers sequences with

distances less than V (mod(j, L)), where mod denotes the modulo operation; and the last

centroid, namely, centroid cL, covers all sequences. Finally, similarly to SE, MSE computes

matrix M (as shown in Equation 3.13) for each subset of sequences and, subsequently, ex-

tracts the primary eigenvector of M , which corresponds to the sequence with the maximum

similarity to all other sequences in the subset of sequences. In Figure 3.3, we show two cen-

troids of “Class A” in ECGFiveDays, extracted with MSE and using a randomly selected
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sequence as reference sequence. MSE can more effectively capture the characteristics of

“Class A” (Figure 3.1) than by using either SE or the arithmetic mean property (solid lines

in Figure 3.3).

We now show how SE and MSE are used in time-series clustering algorithms.

3.3.3 Shape-based Time-Series Clustering Methods

In this section, we present k-Shape and k-MS, our novel algorithms for time-series cluster-

ing. We first describe k-Shape, which relies on the SBD distance measure (Section 3.3.1)

and SE for centroid computation (Section 3.3.2) to efficiently produce clusters of time series.

k-Shape Clustering Algorithm: k-Shape is a partitional clustering method that is based

on an iterative refinement procedure similar to the one used in k-means. Through this itera-

tive procedure, k-Shape minimizes the sum of squared distances (Equation 3.1) and manages

to: (i) produce homogeneous and well-separated clusters, and (ii) scale linearly with the

number of time series. k-Shape is a nontrivial instantiation of k-means that compares se-

quences efficiently and computes centroids effectively under the scaling, translation, and

shift invariances. As we will see, the choice of distance measure and centroid computation

method make k-Shape the only scalable method that significantly outperforms k-means.

In every iteration, k-Shape performs two steps: (i) in the assignment step, k-Shape

updates the cluster memberships by comparing each time series with all computed centroids

and by assigning each time series to the cluster of the closest centroid; (ii) in the refinement

step, the cluster centroids are updated using the SE method to reflect the changes in cluster

memberships in the previous step. k-Shape repeats these two steps until either no change

in cluster membership occurs or the maximum number of iterations allowed is reached.

k-Shape (see Algorithm 4) expects as input the time series set X and the number

of clusters k that we want to produce. Initially, we randomly assign the time series in

X to clusters. Then, we compute each cluster centroid using Algorithm 2 (lines 5-10).

Once the centroids are computed, we refine the memberships of the clusters by using SBD

(Algorithm 1) in lines 11-17. We repeat this procedure until the algorithm converges or
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Algorithm 4: [IDX ,C ] = k-Shape(X ,k)
Input: X is an n-by-m matrix containing n time series of length m that are initially

z-normalized.
k is the number of clusters to produce.

Output: IDX is an n-by-1 vector with the assignment of n time series to k clusters
(initialized randomly).

C is a k-by-m matrix with k centroids of length m (initialized as vectors
with all zeros).

1 iter ← 0
2 IDX ′← [ ]
3 while IDX! = IDX ′ and iter < 100 do
4 IDX ′← IDX

// Refinement step
5 for j ← 1 to k do
6 X ′← [ ]
7 for i ← 1 to n do
8 if IDX(i) = j then
9 X ′← [X ′;X(i)]

10 C (j)← SE(X ′,C (j)) // Algorithm 2

// Assignment step
11 for i ← 1 to n do
12 mindist←∞
13 for j ← 1 to k do
14 [dist,x ′]← SBD(C (j),X(i)) // Algorithm 1
15 if dist <mindist then
16 mindist← dist
17 IDX(i)← j

18 iter ← iter + 1

reaches the maximum number of iterations (usually a small number, such as 100). The

output of the algorithm is the assignment of sequences to clusters and the centroids for

each cluster.

Having described k-Shape, we now present k-MS, which relies on the SBD distance

measure (Section 3.3.1) and MSE for centroid computation (Section 3.3.2).

k-MS Clustering Algorithm: k-MS relies on a similar iterative refinement procedure to

the one used for k-Shape. In every iteration, k-MS performs two steps: (i) in the assignment

step, k-MS compares each time series to all computed centroids per cluster, assigns each time
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series to the closest centroid, and updates cluster memberships based on the memberships

of centroids that belong to the same cluster; (ii) in the refinement step, the cluster centroids

are updated using the MSE method to reflect the changes in cluster memberships in the

previous step. k-MS repeats these two steps until either no change in cluster membership

occurs or the maximum number of iterations allowed is reached.

k-MS (see Algorithm 5) expects three input parameters: (i) the time series set X; (ii)

the number of clusters k; and (iii) the number of centroids L per cluster that we want to

produce. In contrast to k-Shape, k-MS needs to handle multiple centroids in each cluster

after the refinement and the assignment steps. In particular, in the refinement step, k-MS

extracts multiple centroids for each cluster and, subsequently, k-MS appends these centroids

in appropriate positions in the global list of centroids (lines 15-16). This step is critical for k-

MS and allows the computation of centroids in each cluster with the same reference sequence.

In the assignment step, k-MS performs an additional step not present in k-Shape: after the

assignment of each time series to a centroid, k-MS merges the memberships of centroids

that belong to the same cluster (lines 24-25).

Complexity of k-Shape and k-MS: As we claimed earlier, k-Shape and k-MS scale

linearly with the number of time series. To see why, we will analyze the computational

complexity of Algorithms 4 and 5, where n is the number of time series, k is the number

of clusters, L is the number of centroids per cluster, and m is the length of the time

series. In the assignment step, k-Shape computes the dissimilarity of n time series to k

centroids by using SBD, which requires O(m · log(m)) time. Thus, the time complexity

of this step is O(n · k ·m · log(m)). k-MS computes the dissimilarity of n time series to

k ·L centroids and, therefore, the time complexity of this step is O(n ·k ·L ·m · log(m)). In

the refinement step, for every cluster, k-Shape computes matrix M , which requires O(m2)

time, and performs an eigenvalue decomposition on M , which requires O(m3) time. Thus,

the complexity of this step is O(max{n ·m2, k ·m3}). k-MS performs the same procedure

L times per cluster and, therefore, the complexity of this step for k-MS is O(max{n ·

m2, k ·L ·m3}). Overall, k-Shape requires O(max{n ·k ·m · log(m), n ·m2, k ·m3}) time per
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Algorithm 5: [IDX ,C ] = k-MS(X ,k,L)
Input: X is an n-by-m matrix containing n time series of length m that are initially

z-normalized.
k is the number of clusters to produce.
L is the number of centroids per cluster.

Output: IDX is an n-by-1 vector with the assignment of n time series to k clusters
(initialized randomly).
C is a k ·L-by-m matrix containing k ·L centroids of length m (initialized as

vectors with all zeros).
1 iter ← 0
2 IDX ′← [ ]
3 [IDXtemp,Ctmp]← k−Shape(X ,k) // Algorithm 4
4 for j ← 1 to k do
5 for w← 1 to L do
6 C (w + (j−1 ) ·L)← Ctmp(j)

7 while IDX! = IDX ′ and iter < 100 do
8 IDX ′← IDX

// Refinement step
9 for j ← 1 to k do

10 X ′← [ ]
11 for i ← 1 to n do
12 if IDX(i) = j then
13 X ′← [X ′;X(i)]

14 Ctmp←MSE(X ′,C (j ·L)),L) // Algorithm 3
15 for w← 1 to L do
16 C (w + (j−1 ) ·L)← Ctmp(w)

// Assignment step
17 for i ← 1 to n do
18 mindist←∞
19 for j ← 1 to k ·L do
20 [dist,x ′]← SBD(C (j),X(i)) // Algorithm 1
21 if dist <mindist then
22 mindist← dist
23 IDX(i)← j

24 for i ← 1 to n do
25 IDX(i)← ceil(IDX(i)/L)
26 iter ← iter + 1

iteration and k-MS requires O(max{n ·k ·L ·m · log(m), n ·m2, k ·L ·m3}). We see that both

algorithms have a linear dependence in the number of time series, and the majority of the

computation cost depends on the length of the time series. However, this length is usually

much smaller than the number of time series (i.e., m� n) and, hence, the dependence

on m is not a bottleneck. (Appendix B further examines the scalability of k-Shape.) In
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rare cases where m is very large (i.e., m� n), segmentation or dimensionality reduction

approaches can be used to sufficiently reduce the length of the sequences [Chan et al., 2003;

Lin et al., 2004].

3.4 Exploiting Clustering for Faster One-Nearest-Neighbor

Classification

So far, we have focused on how to perform shape-based clustering of time series effectively.

However, as noted earlier, clustering is not only useful as a powerful standalone method,

but also as a preprocessing or subroutine for other related tasks over time series. In this

section, we show how k-Shape, our simplest shape-based clustering method, can effectively

reduce the search space of one-nearest-neighbor algorithms and lead to fast and accurate

techniques for the important problem of classification of time series.

One-nearest-neighbor, or 1-NN, classifiers address the time-series classification problem

by assigning each time series to the category or class of the “nearest” time series according

to a distance measure. 1-NN classifiers are popular because they do not rely on tunable

parameters, and also because they can be used in conjunction with an appropriate choice

of distance measure, out of the vast array of options (see Section 2.3 for examples of dis-

tance measures). Furthermore, 1-NN classifiers perform exceptionally well for time-series

classification when used in conjunction with competitive distance measures for time series,

as shown in [Bagnall and Lines, 2014; Lines and Bagnall, 2014; Lines and Bagnall, 2015;

Bagnall et al., 2016].

Reduction of dimensionality, auxiliary index structures, and lower bounding of distance

measures have been previously exploited to reduce the computational time of 1-NN classifiers

for time series [Agrawal et al., 1993; Faloutsos et al., 1994; Rakthanmanon et al., 2012].

Alternative methods for 1-NN classification, known as k-Nearest Centroid Classifiers (k-

NCC), extract for each “query” the k nearest neighbors from each class in the search space,

and then summarize each of the sets of k neighbors with a centroid that is computed as some
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Algorithm 6: Accuracy = NNC (Training,Test,TrainingLabels,TestLabels,LeaveOneOut)
Input: Training is a k-by-m matrix containing k time series of length m.

Test is an n-by-m matrix containing n time series of length m.
TrainingLabels is a 1-by-k vector with the class labels of k time series in Training.
TestLabels is a 1-by-n vector with the class labels of n time series in Test.
LeaveOneOut is a Boolean indicating if this is a leave-one-out classification (true) or

one-nearest-neighbor classification (false).
Output: Accuracy is the classification accuracy.

1 Accuracy← 0
2 for i ← 1 to n do
3 best_dist← Inf
4 for j ← 1 to k do
5 if LeaveOneOut= true then
6 if i! = j then
7 [dist,∼ ]← SBD(Training(j),Test(i)) // Algorithm 1

8 else
9 [dist,∼ ]← SBD(Training(j),Test(i)) // Algorithm 1

10 if dist < best_dist then
11 class← TrainingLabels(j)
12 best_dist← dist

13 if TestLabels(i) = class then
14 Accuracy←Accuracy + 1

15 Accuracy←Accuracy/n

variant of a mean vector. k-NCC methods determine the class of the query using factors

such as the proximity and the spatial distribution of the computed centroids relative to

the query [Mitani and Hamamoto, 2000; Mitani and Hamamoto, 2006; Chaudhuri, 1996;

Sánchez et al., 1997; Gou et al., 2012]. However, k-NCC methods are usually more expensive

than 1-NN classifiers because of the additional processing that is required beyond nearest-

neighbor search. Interestingly, these approaches reduce to 1-NN when k = 1. Recently,

[Petitjean et al., 2014; Petitjean et al., 2016] demonstrated the potential of representing

each class in the search space with a small number of centroids computed via clustering.

However, the clustering methods that they use are particularly inefficient, as we show in

Section 3.6, and they significantly increase the cost to estimate an appropriate number of

centroids to represent each class in the search space.

To address this issue, and inspired by [Petitjean et al., 2014; Petitjean et al., 2016], we

now introduce the Nearest Shape Classifier (NSC), a 1-NN classifier that relies on k-Shape
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Algorithm 7: Accuracy = NSC (Train,Test,TrainLabels,TestLabels,InstancesLabels)
Input: Train is a k-by-m matrix containing k time series of length m.

Test is an n-by-m matrix containing n time series of length m.
TrainLabels is a 1-by-k vector with the class labels of the k time series in Train.
TestLabels is a 1-by-n vector with the class labels of the n time series in Test.
InstancesLabels is a 1-by-w vector with each cell pointing to a list with IDs of
instances in Train belonging to each of the w classes.

Output: Accuracy is a scalar value containing the classification accuracy on Test.
1 Best_Accuracy←NNC (Train,Train,TrainLabels,TrainLabels, true) // Algorithm 6
2 Best_NumberCentroids← k
3 Best_Centroids← Train
4 Best_CentroidsLabels← TrainLabels
5 Centroids← []
6 CentroidsLabels← []
7 for i ← 1 to max(length(InstancesLabels([1 : w])))−1 do
8 for class← 1 to w do
9 IDs← InstancesLabels(class)

10 [nrows,ncolumns]← size(Train(IDs))
11 if i= 1 and nrows= 1 then
12 tmp_centroids← Train(IDs)
13 Centroids← [Centroids; tmp_centroids]
14 CentroidsLabels← [CentroidsLabels;class]
15 else if i= 1 and nrows > 1 then
16 index ← rand(IDs)
17 ref_centroid ← Train(index)
18 tmp_centroids← SE(Train(IDs),ref_centroid) // Algorithm 2
19 Centroids← [Centroids; tmp_centroids]
20 CentroidsLabels← [CentroidsLabels;class]
21 else if i > 1 and nrows > i then
22 [∼, tmp_centroids]← k−Shape(Train(IDs), i) // Algorithm 4
23 Centroids← [Centroids; tmp_centroids]
24 for p← 1 to nrows do
25 CentroidsLabels← [CentroidsLabels;class]
26 else if i > 1 and nrows≤ i then
27 Centroids← [Centroids;Train(IDs)]
28 for p← 1 to nrows do
29 CentroidsLabels← [CentroidsLabels;class]

30 Acc←NNC (Centroids,Train,CentroidsLabels,TrainLabels, true) // Algorithm 6
31 if Acc > Best_Accuracy then
32 Best_Accuracy←AccuracyOnCentroids
33 Best_NumberCentroids← size(Centroids,1 )
34 Best_Centroids← Centroids
35 Best_CentroidsLabels← CentroidsLabels
36 Centroids← []
37 CentroidsLabels← []
38 Accuracy←NNC (Best_Centroids,Test,Best_CentroidsLabels,TestLabels, false)

// Algorithm 6
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to effectively summarize time series in its search space (see Algorithm 7). In contrast to

k-NCC methods, NSC uses cluster centroids to summarize the entire search space and does

not recompute the centroids for every query. The estimation of the number of centroids

relies solely on analysis over the search space of the 1-NN classifier. Specifically, NSC first

determines how accurately it can estimate the class for queries taken from the search space

(line 1). This accuracy serves as a baseline estimation of the best achieved accuracy when

the entire search space is used. Then, NSC varies the number of centroids required to

summarize each class in the search space (line 7). NSC computes centroids for each class in

the search space by considering the following four cases: (i) when one centroid is requested

and the class contains one time series, NSC uses this time series as centroid (lines 11-14);

(ii) when one centroid is requested and the class contains more than one time series, NSC

uses Algorithm 2 in Section 3.3.2 to summarize the time series (lines 15-20); (iii) when two

or more centroids are requested and the class contains more time series than the requested

centroids, NSC uses Algorithm 4 of Section 3.3.3 to cluster and summarize the time series

(lines 21-25); and (iv) when two or more centroids are requested and the class contains

fewer time series than the requested centroids, NSC uses the time series as centroids and

does not perform clustering, to avoid producing singleton clusters with just one time series

in them (lines 26-29). For each number of centroids, NSC evaluates how accurately it can

estimate the class of the queries in the search space when the search space is summarized by

that number of centroids. The process terminates if this accuracy outperforms the baseline

accuracy computed earlier (in line 1). In the end, NSC determines the class of a query as

the class of the nearest centroid.

The above procedure permits the estimation of the number of centroids and the computa-

tion of centroids that capture internal characteristics of every class of time series accurately,

as we will see in Section 3.6.7. NSC requires as input the instances and the labels of the

training and test sets along with a breakdown of training instances per class. As output,

NSC computes the 1-NN classification accuracy (Algorithm 6) on the test set but using as

search space the estimated number of centroids per class over the training set.
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We now turn to the description of the settings of our in-depth experimental evaluation

of SBD, k-Shape, k-MS, and NSC against the state-of-the-art time-series distance measures,

clustering algorithms, and classification algorithms.

3.5 Experimental Settings

In this section, we review in detail the settings for the evaluation of SBD, k-Shape, k-MS,

and NSC.

Datasets: We use the largest public collection of class-labeled time-series datasets, namely,

the UCR collection [Keogh et al., 2015]. It consists of 85 datasets, both synthetic and real,

which span several different domains. (Appendix C provides the exact names of the 85

datasets used in our analysis along with some relevant characteristics.) Each dataset con-

tains from 40 to 16,637 sequences. The sequences in each dataset have equal length, but

from one dataset to another the sequence length varies from 24 to 2,709. These datasets are

annotated and every sequence can belong to only one class. In the context of clustering, and

for the sake of convenience, the class label for a sequence is often interpreted as identifying

the cluster where the sequence belongs. Furthermore, the datasets are already z-normalized

and split into training and test sets. As we will see, we use this split of the datasets for the

distance measure evaluation; we also use the training sets for tuning some of the baselines.

Platform: We ran our experiments on a cluster of 61 servers with identical configuration:

Dual Intel Xeon E5-2650 (8-core with 2-way SMT) processor with clock speed at 2.6 GHz

and up to 256 GB RAM. We utilized on average 20 servers continuously for a period of two

months in order to perform all experiments included in this chapter. Each server runs Red

Hat Enterprise Linux 6.6 (64-bit) and Matlab R2014a (64-bit).

Implementation: We implemented all approaches under the same framework, in Matlab,

for a consistent evaluation in terms of both accuracy and efficiency. For repeatability pur-

poses, we make all datasets and source code available.4

4http://www.cs.columbia.edu/~jopa/kshape.html

http://www.cs.columbia.edu/~jopa/kshape.html
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Baselines: We evaluate SBD, our distance measure; k-Shape and k-MS, our clustering

approaches; and NSC, our one-nearest neighbor method. Specifically, we compare SBD

against the strongest state-of-the-art distance measures for time series (see Section 2.3):

• ED: a simple, efficient — yet accurate — distance measure [Faloutsos et al., 1994]

• DTW: one of the best performing — but expensive — distance measure for time series

[Sakoe and Chiba, 1978]

• cDTW: the constrained version of DTW, with improved accuracy and efficiency [Sakoe

and Chiba, 1978]

We compare k-Shape and k-MS against the three strongest types of scalable and non-

scalable clustering methods, namely, partitional, hierarchical, and spectral methods (see

Section 3.2.2 for a detailed discussion), combined with the most competitive distance

measures. As scalable methods, we consider the classic k-means algorithm with ED (k-

AVG+ED) [MacQueen, 1967] and the following variants of k-means:

• k-AVG+Dist: k-means with DTW and SBD as distance measures and the arithmetic

mean of time series coordinates for centroid computation

• k-DBA: k-means with DTW as distance measure and the DBA method for centroid

computation [Petitjean et al., 2011]

• KSC: k-means with a distance measure offering pairwise scaling and shifting of time

series and computation of the spectral norm of a matrix (i.e., matrix decomposition) for

centroid computation [Yang and Leskovec, 2011]

As non-scalable methods, among partitional methods we consider the Partitioning Around

Medoids (PAM) implementation of the k-medoids algorithm [Kaufman and Rousseeuw,

2009]. Among hierarchical methods, we use agglomerative hierarchical clustering with sin-

gle, average, and complete linkage criteria [Kaufman and Rousseeuw, 2009]. Among spectral

methods, we consider the popular normalized spectral clustering method [Ng et al., 2002].

These non-scalable approaches require a large number of distance calculations to compute

the full dissimilarity matrix and, hence, they become unacceptably inefficient with high-cost

distance measures. For this reason, we distribute the computation of the full dissimilarity
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matrices and, therefore, we do not report runtime results for these methods.

Beyond these scalable and non-scalable methods, we further evaluate k-Shape and k-MS

against the strongest types of density-based methods, namely, DBSCAN [Ester et al., 1996]

and TADPole [Begum et al., 2015]. Density-based methods have started to receive attention

for time-series clustering to identify outliers in the data. DBSCAN can be combined with

any distance measure, while TADPole, a variant of the recently proposed Density Peaks

(DP) clustering method [Rodriguez and Laio, 2014], uses the cDTW distance. DBSCAN and

TADPole are also non-scalable methods. Specifically, DBSCAN requires the computation

of the full dissimilarity matrix to operate.5 In contrast, TADPole significantly prunes the

dissimilarity matrix for cDTW, but requires the computation of two additional dissimilarity

matrices based on ED. TADPole improves in runtime performance relative to DP [Rodriguez

and Laio, 2014], but remains non-scalable and particularly inefficient relative to k-means

variants. Importantly, as we discuss later, both algorithms require the computation of the

dissimilarity matrix for cDTW in order to accurately estimate input parameters, a step

that is often omitted from runtime experiments. Therefore, both density-based methods

are inefficient and, hence, we do not report runtime results for them.

We also compare k-Shape and k-MS against U-Shapelets [Zakaria et al., 2012]. Unlike

previous approaches, U-Shapelets exploits patterns in subsequences of time series to isolate

outliers. Unfortunately, U-Shapelets cannot handle large datasets, so we use a variant that

has been shown to be faster than the original technique without a significant loss in accuracy

[Begum et al., 2015]. Table 3.1 summarizes the non-scalable clustering combinations used

in our evaluation. Overall, we compared k-Shape against 30 clustering approaches.

We compare NSC against data editing and condensing algorithms that are applied in

the full dissimilarity matrix of the training instances of a 1-NN classifier and determine

the order in which instances can be removed to guarantee the performance of a 1-NN

classifier. Specifically, we evaluate NSC against three popular variants of such reduction

5DBSCAN can use auxiliary index structures to accelerate neighborhood queries only for metric distance
functions, such as ED.
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Name Clustering Algorithm Distance
Measure

PAM+ED Partitioning Around Medoids ED
PAM+cDTW Partitioning Around Medoids cDTW5

PAM+SBD Partitioning Around Medoids SBD
H-S+ED Hierarchical with single linkage ED
H-A+ED Hierarchical with average linkage ED
H-C+ED Hierarchical with complete linkage ED

H-S+cDTW Hierarchical with single linkage cDTW5

H-A+cDTW Hierarchical with average linkage cDTW5

H-C+cDTW Hierarchical with complete linkage cDTW5

H-S+SBD Hierarchical with single linkage SBD
H-A+SBD Hierarchical with average linkage SBD
H-C+SBD Hierarchical with complete linkage SBD
S+ED Normalized Spectral Clustering ED

S+cDTW Normalized Spectral Clustering cDTW5

S+SBD Normalized Spectral Clustering SBD
DBSCAN0.3+ED Density-based Spatial Clustering ED
DBSCANBest+ED Density-based Spatial Clustering ED
DBSCAN0.3+SBD Density-based Spatial Clustering SBD
DBSCANBest+SBD Density-based Spatial Clustering SBD
DBSCAN0.3+cDTW Density-based Spatial Clustering cDTW5

DBSCANBest+cDTW Density-based Spatial Clustering cDTW5

TADPole0.3 Time-series Anytime Density Peaks Clustering cDTW5

TADPoleBest Time-series Anytime Density Peaks Clustering cDTW5

U-Shapelets0.5 Unsupervised-Shapelets Clustering -
U-ShapeletsBest Unsupervised-Shapelets Clustering -

Table 3.1: Combinations of PAM, hierarchical, spectral, density-based, shapelet-based
methods with ED, cDTW, and SBD for our evaluation.

techniques, namely, RT1, RT2, and RT3 [Wilson and Martinez, 1997; Wilson and Martinez,

2000]. Additionally, we also compare NSC against a simple baseline, namely, Random, that

randomly chooses instances for removal from the training instances. Finally, we compare

the performance of NSC with three competitive distance measures (Sections 2.3 and 3.3.1),

namely, ED (NSC+ED), SBD (NSC+SBD), and cDTW5 (NSC+cDTW), against 1-NN

classifiers.

Parameter settings: Among the distance measures discussed above, only cDTW requires

setting a parameter, to constrain its warping window. We consider two cases from the

literature: (i) cDTWopt: we compute the optimal window by performing a leave-one-out

classification step over the training set of each dataset; (ii) cDTWw: we use as window 5%,

for cDTW5, and 10%, for cDTW10, of the length of the time series of each dataset; this
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second case is more realistic for an unsupervised setting such as clustering.6 For the 1-NN

classification computation, we also consider the state-of-the-art lower bounding approach

LBKeogh [Keogh and Ratanamahatana, 2005], which prunes time series that could not be

matched when DTW and cDTW are used. We denote lower bounding with the LB subscript

(e.g., cDTW10
LB). For clustering, all partitional and spectral algorithms that we compare

receive the target number of clusters k as input, which is equal to the number of classes for

each dataset. The only exception is the partitional k-MS method, which requires setting an

additional parameter, namely, the number of centroids per cluster. For k-MS, we set the

number of centroids per cluster, L, to L= 5 across all datasets.

For hierarchical clustering, we compute a threshold that cuts the produced dendrogram

at the minimum height such that k clusters are formed. We set the maximum number of

iterations for k-Shape, all variants of k-means, PAM, and spectral methods to 100. Finally,

in every iteration of k-Shape, k-DBA, and KSC, we use the centroids of the previous run

as reference sequences to refine the centroids of the current run once.

In contrast to partitional, hierarchical, and spectral methods, density-based methods

require as input two parameters. Specifically, DBSCAN requires as input a cutoff threshold,

e, and the minimum number of points to form a density region, minPts. To estimate e for

each distance measure, we fix the value of minPts (we consider values 3, 4, 5, 10, and 20),

compute the full dissimilarity matrix, and keep, for each time series, the largest distance

value such that exactly minPts time series are within that distance from it. We sort these

distance values in descending order and compute the knee point of the curve of distance

values. The process of determining this knee point is similar to the process of determining

the number of clusters in clustering methods [Salvador and Chan, 2004]. We consider all

bisections of the curve and, then, by walking along the curve one bisection point at a time,

we fit two straight lines, one to all the points to the left of the bisection point and one to all

the points to the right of the bisection point. The knee point of the curve corresponds to

6For non-scalable methods, we use the cDTW5 variant of cDTW for its efficiency, as noted in Table 3.1,
even though cDTW10, cDTWopt, and DTW perform similarly. We explicitly note when DTW is used.
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the bisection point with the minimum sum of errors for the two fitted lines. For all distance

measures, minPts = 3 performed the best on average across all datasets and we denote

this variant as DBSCAN3. However, the best minPts value for a specific dataset might be

different, so we also determine the best minPts parameter for each dataset after performing

a post-hoc analysis on the Rand Index results (see below). We denote the resulting version

of DBSCAN with dataset-specific values of minPts as DBSCANBest.

The second density-based method that we consider, TADPole, also requires setting

the value of two parameters: (i) the number k of clusters and (ii) a cutoff threshold e.

Considering that DBSCAN and TADPole operate similarly, and the fact that the authors of

TADPole [Begum et al., 2015] do not provide details on the estimation of these parameters,

we use the same procedure as with DBSCAN. TADPole also performs the best on average

across all datasets when minPts= 3. We refer to this version of the algorithm as TADPole3.

To determine the best minPts parameter for each dataset, we perform a post-hoc analysis

on the Rand Index results. We refer to this version of the algorithm as TADPoleBest.

U-Shapelets requires setting the value of just one parameter, namely, the length of

subsequences of the entire time series. We consider values of 10%, 20%, 30%, 40%, and 50%

of the time series length of each dataset. The best performing length for U-Shapelets across

all datasets is 50% and we denote the resulting technique as U-Shapelets0.5. Similarly

to DBSCAN and TADPole, we also consider the best length parameter for each dataset

after performing a post-hoc analysis. We denote this approach as U-ShapeletsBest. We

note that U-ShapeletsBest, DBSCANBest, and TADPoleBest are not truly options for fully

unsupervised clustering, given that their parameters are the result of post-hoc analysis with

labeled data. However, we consider these options for completeness.

Finally, we use cDTW5 to compute the dissimilarity matrices for RT1, RT2, and RT3,

as well as to measure the accuracy of 1-NN classifiers for Random, RT1, RT2, and RT3.

Metrics: We compare the approaches on both runtime and accuracy. For runtime, we

compute CPU time utilization and measure the time ratios for our comparisons for each

dataset. We summarize the runtime performance by reporting, for each method, the number
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of datasets with time ratios of up to one order of magnitude, between one but no higher

than two orders of magnitude, and at least two orders of magnitude in comparison to

another method. Following [Ding et al., 2008], we use the 1-NN classifier, which is a simple

and parameter-free classifier, to evaluate distance measures. We report the classification

accuracy (i.e., number of correctly classified instances over all instances) by performing

1-NN classification over the training and test sets of each dataset. Because the 1-NN

classifier is deterministic, we make this computation once. Following [Batista et al., 2014],

we also visualize the actual accuracy gain and the expected accuracy gain for pairs of distance

measures to evaluate if we can predict in advance which distance measure is more useful

for which datasets. The actual accuracy gain for each dataset is defined as the ratio of

the 1-NN classification accuracies of the two distance measures over the test portion of the

dataset. The expected accuracy gain for each dataset is defined as the ratio of the leave-

one-out classification accuracies of the two distance measures over the training portion

of the dataset. In both ratios, the denominator is the accuracy of the baseline distance

measure whereas the numerator is the accuracy of the competing distance measure. The

resulting plot illustrates the actual accuracy gains against the expected accuracy gains

over all datasets and consists of four regions. Each region corresponds to the true-positive

(TP), true-negative (TN), false-positive (FP), and false-negative (FN) cases of the well-

known contingency table for comparing pairs of classifiers. For datasets in the TP region,

we can predict (i.e., by evaluation on the training portions) that the competing distance

measure will outperform the baseline distance measure. For datasets in the TN region,

we can predict that the baseline distance measure will outperform the competing distance

measure. For datasets in the FN region, we inaccurately predict that the baseline distance

measure will outperform the competing distance measure. Similarly, for datasets in the FP

region, we inaccurately predict that the competing distance measure will outperform the

baseline distance measure.

We use the Rand Index [Rand, 1971] to evaluate clustering accuracy over the fused

training and test sets of each dataset. This metric is related to the classification accuracy
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and is defined as R = TP+TN
TP+TN+FP+FN , where TP is the number of time series pairs that

belong to the same class and are assigned to the same cluster, TN is the number of time

series pairs that belong to different classes and are assigned to different clusters, FP is the

number of time series pairs that belong to different classes but are assigned to the same

cluster, and FN is the number of time series pairs that belong to the same class but are

assigned to different clusters. As hierarchical algorithms are deterministic, we report the

Rand Index over one run. However, for partitional methods, we report the average Rand

Index over 10 runs and for spectral methods the average Rand Index over 100 runs; in every

run we use a different random initialization.

Statistical analysis: Following [Batista et al., 2014; Giusti and Batista, 2013], we ana-

lyze the results of every pairwise comparison of algorithms over multiple datasets using the

Wilcoxon test [Wilcoxon, 1945] with a 99% confidence level. According to [Demšar, 2006],

the Wilcoxon test is less affected by outliers than is the t-test [Rice, 2006], as Wilcoxon does

not consider absolute commensurability of differences. Moreover, using pairwise tests to rea-

son about multiple algorithms is not fully satisfactory because sometimes the null hypotheses

are rejected due to random chance. Therefore, we also use the Friedman test [Friedman,

1937] followed by the post-hoc Nemenyi test [Nemenyi, 1963] for comparison of multiple

algorithms over multiple datasets, as suggested in [Demšar, 2006]. The Friedman and

Nemenyi tests require more evidence to detect statistical significance than the Wilcoxon

test [Giusti and Batista, 2013] (i.e., the larger the number of methods, the larger the num-

ber of datasets required) and, hence, as we already use all 85 datasets for the Wilcoxon

test, we report statistical significant results with a 95% confidence level.

3.6 Experimental Results

In this section, we report our experimental results. Firstly, we evaluate SBD against the

state-of-the-art distance measures (Section 3.6.1) and corroborate our performance results

over optimized implementations for the state-of-the-art distance measures (Section 3.6.2).
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Secondly, we compare k-Shape and k-MS against scalable (Section 3.6.3) and non-scalable

(Section 3.6.4) clustering approaches. Thirdly, we evaluate k-Shape and k-MS against

approaches that handle outliers in datasets (Section 3.6.5) and approaches that consider

only subsequences of the entire time series in an attempt to handle abnormal behaviors

in time series (Section 3.6.6). Then, we evaluate NSC against data editing algorithms

that reduce the search space of 1-NN classifiers (Section 3.6.7). Finally, we summarize our

findings (Section 3.6.8).

3.6.1 Evaluation of SBD Against Other Distance Measures

We evaluate SBD, the time-series distance measure discussed in Section 3.3.1, in terms

of runtime and accuracy performance in comparison to other state-of-the-art time-series

distance measures.

Comparison against ED: To understand if SBD (Section 3.3.1) is an effective measure for

time-series comparison, we evaluate it against the state-of-the-art distance measures, using

their 1-NN classification accuracy across 85 datasets (Section 3.5). Table 3.2 reports the

performance of the state-of-the-art measures against the baseline ED. All distance measures,

including SBD, outperform ED with statistical significance. In particular, SBD performs

at least as well as ED in 77 out of 85 datasets in contrast to DTW, cDTW5, and cDTW10,

which perform at least as well as ED in 56, 63, and 60 datasets, respectively. Only cDTWOpt,

with its optimal warping window constraint, reaches the performance of SBD (i.e., cDTWOpt

performs at least as well as ED in 92% of the datasets).

However, to better understand the usefulness of each distance measure, we further an-

alyze if we can predict in advance the accuracy gain by using one distance measure over

another distance measure (i.e., we want to predict the ratio of the classification accuracy

of one distance measure over that of another distance measure). Figure 3.4a shows that

for the large majority of the datasets we can accurately predict in advance if SBD will

outperform ED or not (please refer to the TP and TN regions of the figure). For only 6

datasets we incorrectly predict that ED will outperform SBD (please refer to the FN region
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Distance
Measure > = < Better [0,10x) [10x,100x) [100x,+∞)
DTW 53 3 29 3 0 9 76

DTWLB 0 14 71
cDTWopt

54 24 7 3 22 28 35
cDTWopt

LB
40 29 16

cDTW5
58 5 22 3 5 39 41

cDTW5
LB

23 41 21
cDTW10

56 4 25 3 2 32 51
cDTW10

LB
8 46 31

SBDNoF F T
54 23 8 3

14 50 21
SBDNoP ow2 57 28 0

SBD 79 6 0

Table 3.2: Comparison of distance measures. Columns “>,” “=,” and “<” denote the
number of datasets over which a distance measure is better, equal, or worse, respectively,
in comparison to ED. “Better” indicates that a distance measure outperforms ED with
statistical significance. Columns “[0, 10x),” “[10x, 100x),” and “[100x, +∞)” denote the
number of datasets over which a distance measure is slower up to 10x, between 10x but no
higher than 100x, and at least 100x, respectively, in comparison to ED.

of the figure). Importantly, 3 out of the 6 datasets are very close to the (1, 1) region, which

highlights the difficulties for identifying differences over those datasets. We note that none

of the datasets belongs to the worst-case FP region, an important characteristic that also

appears in the evaluation of the supervised cDTWOpt distance. In contrast, for cDTW5

(Figure 3.4b), 3 datasets appear in the FP region, 10 in the FN region, and the rest of the

datasets are scattered in the TP and TN regions. As a result, SBD, a parameter-free and

unsupervised distance measure, shows similar merit to the supervised cDTWOpt distance.

To further elaborate on the importance of optimally constraining the warping window of

DTW, we note that only cDTWOpt is significantly better than DTW. In particular, cDTWopt

performs at least as well as DTW in 61 datasets, cDTW5 performs at least as well as DTW

in 57 datasets, and cDTW10 performs at least as well as DTW in 67 datasets. For cDTW5,

the Wilcoxon test suggests no statistical significance over DTW whereas for cDTW10 the

improvement is statistically significant but with a p-value close to the confidence level, which

indicates that deeper statistical analysis is required.

Figure 3.5 shows the average rank across datasets of cDTWopt, cDTW5, cDTW10, and

DTW. cDTWopt is the top measure, with an average rank of 2.1, meaning that cDTWopt

performed best in the majority of the datasets. The Friedman test rejects the null hypothesis
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Figure 3.4: Comparison of accuracy gain for ED, SBD, and cDTW5 over 85 datasets.

that all measures behave similarly, and, hence, we proceed with a post-hoc Nemenyi test,

to evaluate the significance of the differences in the ranks. The wiggly line in the figure

connects all measures that do not perform statistically differently according to the Nemenyi

test. We observe two clusters: one where the ranks of cDTWopt, cDTW5, and cDTW10

do not present a significant difference, and one where the ranks of cDTW5, cDTW10, and

DTW do not present a significant difference. As a consequence, only cDTWopt appears

to perform significantly better than DTW. This conclusion contradicts the general belief

that constraining DTW’s warping window significantly improves accuracy, which was also

confirmed by our previous analysis on a subset of 48 datasets [Paparrizos and Gravano,

2015].

Comparison against DTW and cDTW: SBD performs at least as well as DTW in

50 datasets, but the statistical test reveals no evidence that either measure is better than

the other. Considering the cDTW versions, we observe that SBD performs similarly to

or better than cDTWopt, cDTW5, and cDTW10 in 41, 37, and 40 datasets, respectively.

Figure 3.4c shows that for the large majority of datasets we can accurately predict in

advance when either SBD or cDTW5 should be used (we omit figures for cDTW10 and

cDTWOpt as they exhibit similar trends). Out of 10 datasets in the FP region, only 2 cases

are problematic, while the remaining 8 datasets are very close to the (1, 1) region, and

hence it is challenging to predict which distance measure is best. Interestingly, there is

no significant difference among SBD, cDTW5, and cDTW10, but cDTWopt is significantly
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cDTWopt

cDTW5
DTW

cDTW10

Figure 3.5: Ranking of distance measures based on the average of their ranks across datasets.
The wiggly line connects all measures that do not perform statistically differently according
to the Nemenyi test.
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cDTWopt

cDTW5
ED
SBD

cDTW10

Figure 3.6: Ranking of distance measures based on the average of their ranks across datasets.
The wiggly line connects all measures that do not perform statistically differently according
to the Nemenyi test.

better than SBD. Importantly, the p-values for Wilcoxon between cDTWopt and SBD are

close to the confidence level, which indicates that deeper statistical analysis is required, as

we discuss next.

Statistical analysis: To better understand the performance of SBD in comparison with

cDTWopt, cDTW5, and cDTW10, we evaluate the significance of their differences in accuracy

when considered all together. Figure 3.6 shows the average rank across datasets of each

distance measure. cDTWopt is the top measure, with an average rank of 2.4, meaning that

cDTWopt performed best in the majority of the datasets. The Friedman test rejects the

null hypothesis that all measures behave similarly, and, hence, we proceed with a post-hoc

Nemenyi test, to evaluate the significance of the differences in the ranks. We observe that

the ranks of cDTWopt, cDTW5, cDTW10, and SBD do not present a significant difference,

and ED, which is ranked last, is significantly worse than the others. In conclusion, SBD is

a very competitive distance measure that significantly outperforms ED and achieves similar

results to both cDTW and DTW. Moreover, SBD is the most robust variant of the cross-

correlation measure (see Appendix A).

Efficiency: We now show that SBD is not only competitive in terms of accuracy, but also

highly efficient. We also demonstrate that implementation choices for SBD can significantly

impact its speed. The last row of Table 3.2 shows the number of datasets over which each

SBD variation is slower than ED. The optimized version of SBD, denoted simply as SBD,

is the fastest version, performing up to 10x slower than ED in 93% of the datasets and
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Distance
Measure Language [0,10x) [10x,100x) [100x,+∞) Reference

cDTWopt
LB

Java 25 45 9 [Schäfer, 2016]
Java 19 52 8 [Wang et al., 2013]

Matlab 34 29 16 This work

DTWLB

Java 1 12 66 [Schäfer, 2016]
Java 0 14 65 [Wang et al., 2013]

Matlab 0 13 66 This work

Table 3.3: Comparison of implementations for cDTWOpt and DTW. Column “Language”
indicates the programming language. Columns “[0, 10x),” “[10x, 100x),” and “[100x, +∞)”
denote the number of datasets over which a distance measure is slower up to 10x, between
10x but no higher than 100x, and at least 100x, respectively, in comparison to ED. “Refer-
ence” indicates the work that describes the implementation details.

10x but less than 100x slower in the remaining 7% of the datasets. When we use SBD still

with FFT but without the power-of-two-length optimization discussed in Section 3.3.1, the

resulting measure, SBDNoPow2, is up to 10x slower than ED in 67% of the datasets and 10x

but less than 100x slower in 33% of the datasets. Furthermore, SBDNoFFT , the version of

SBD without FFT, performs up to 10x, 10x but no higher than 100x, and at least 100x

slower than ED in 16%, 59%, and 25% of the datasets, respectively. Table 3.2 also shows

that DTW and cDTW variants are substantially slower than SBD. Specifically, DTW is up

to 100x slower in 40% of the datasets and at least 100x in 60% of the datasets in comparison

to SBD. Similarly, cDTWopt, cDTW5, and cDTW10 are more than 10x slower in comparison

to SBD in 51%, 65%, and 79% of the datasets, respectively. Even when we speed up the

search of 1-NN classification computation, by pruning time series impossible for a match

using LBKeogh, SBD is still faster. In particular, DTWLB is up to 100x slower in 46% of

the datasets and more than 100x in 54% of the datasets in comparison to SBD. cDTWopt
LB,

cDTW5
LB, and cDTW10

LB are more than 10x slower in comparison to SBD in 24%, 35%,

and 54% of the datasets, respectively. Next, we corroborate our performance findings over

different implementations of the rival distance measures and perform experiments to better

understand the scalability of distance measures.
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3.6.2 Robustness of Runtime Results Across Implementations

Considering that the choice of programming language as well as optimizations in imple-

mentation may affect the performance of distance measures, we now compare our Matlab

implementation of cDTW and DTW variants across two state-of-the-art Java implementa-

tions from the literature. Specifically, we compare our performance results for cDTWopt
LB

and DTWLB with the results as reported in [Schäfer, 2016], which follows the optimizations

described in [Rakthanmanon et al., 2012], and with results we obtained in our experimental

settings with an implementation that follows the optimizations described in [Wang et al.,

2013]. Table 3.3 compares the performance of the three implementations over 79 datasets

that are common between [Schäfer, 2016] and our work. DTWLB performs similarly across

all implementations. In particular, DTWLB is up to 100x slower than ED in approximately

17% of the datasets and at least 100x slower than ED in approximately 83% of the datasets.

Lower bounding methods prune only a small fraction of the DTW computations (on average

about 25%) and, hence, there is minor variability in performance across implementations.

In contrast to DTWLB, for cDTWopt
LB there is some variability in the results across

implementations. However, for a vast majority of datasets the results are consistent across

implementations. Specifically, cDTWopt
LB is up to 100x slower than ED in approximately

89% of the datasets and at least 100x slower than ED in approximately 11% of the datasets

for the two Java implementations. The implementation of [Schäfer, 2016], which exploits

multiple lower bounding measures in a cascade, is more efficient than [Wang et al., 2013],

which uses only one lower bounding method. Our version of cDTWopt
LB is up to 100x slower

than ED in 80% of the datasets and at least 100x slower than ED in approximately 20% of

the datasets. In comparison to the Java implementations, we observe that the performance

of cDTWopt
LB appears to decrease in a small number of datasets with long time series because,

in such datasets, Matlab’s underlying optimizations in linear algebra operations benefit ED.

Therefore, for approximately 10% of the datasets, our version of cDTWopt
LB appears slower

than the Java implementations but, importantly, for approximately 18% of the datasets (i.e.,

in datasets with short time series), cDTWopt
LB appears faster than the Java implementations.
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Figure 3.7: Runtime of ED, SBD, cDTWOpt, and cDTWOpt
LB as a function of (a) the number

of time series n and (b) the time series length m.
Overall, we can conclude that the performance results of our implementation of DTW and

cDTW variants are consistent with what has been reported previously in the literature,

with some small variability in the results of cDTW due to underlying optimizations in

programming languages and choices of lower bounding methods.

Even though our performance results are consistent across implementations, we believe

that several factors hinder the process of understanding the runtime performance when

solely the UCR datasets are used. In particular, the large variations in the number and

length of time series across datasets do not help to provide a clear picture of how distance

measures scale as a function of such variable numbers. Moreover, the choice of different

parameters to constrain DTW’s warping window can significantly affect the runtime per-

formance of the distance measure and the pruning power of lower bounding approaches.

To better understand the runtime performance and scalability of distance measures,

we perform an additional experiment using the synthetic CBF dataset [Saito, 1994]. This

dataset enables experiments with varying values of (a) the number of time series n and

(b) the time series length m, without changing any of its general properties. We report

the CPU runtime7 over values for n and m that are orders of magnitude larger than those

for the majority of the datasets in the UCR archive [Keogh et al., 2015]. Specifically, in

Figure 3.7a we vary m from 10,000 to 50,000 while we set n= 500. We observe that SBD is

7For this experiment, we distributed the computation across 8 processes. The code was extracted and
compiled into Matlab’s C/C++ MEX files.
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an order of magnitude slower (8-18x) than ED with varying lengths while cDTWOpt
LB is two

orders of magnitude slower (102-679x) and cDTWOpt is two to three orders of magnitude

slower (732-4969x) than ED. SBD remains an order of magnitude faster (12x-48x) than

cDTWOpt
LB and one to two orders of magnitude faster (87-354x) than cDTWOpt. Similarly,

in Figure 3.7b we vary n from 20,000 to 100,000 while we set m = 4,000. We observe

that all measures scale linearly with the number of time series when m is static and SBD

remains less than an order of magnitude slower (6.9x) than ED while cDTWOpt
LB is an order

of magnitude slower (62x) and cDTWOpt is two orders of magnitude slower (464x) than

ED.

3.6.3 Evaluation of k-Shape and k-MS Against Scalable Methods

Having shown the robustness of SBD, we now compare k-Shape and k-MS, our time-series

clustering algorithms discussed in Section 3.3.3, against other scalable time-series clustering

algorithms.

Comparison against k-AVG+ED: Table 3.4 reports the performance of variants of k-

means against k-AVG+ED, using their Rand Index on the 85 datasets (see Section 3.5).

From all these variants of k-means, only k-Shape and k-MS outperform k-AVG+ED with

statistical significance, as we show next. In most cases, replacing ED in k-means with other

distances not only does not improve accuracy significantly, but in certain cases results in

substantially lower performance. For example, k-AVG+SBD achieves higher accuracy than

k-AVG+ED in 56% of the datasets, but the differences in accuracy are not statistically

significant. Interestingly, when DTW is combined with k-means, in k-AVG+DTW, the

performance is significantly worse than with k-AVG+ED.

Even in cases where both the distance measure and the centroid computation method

of k-means are modified, the performance does not improve significantly in comparison to

k-AVG+ED. k-DBA outperforms k-AVG+DTW with statistical significance in 67 out of 85

datasets. Both of these approaches use DTW as distance measure, but k-DBA also modifies

its centroid computation method. This modification significantly improves the performance
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Algorithm > = < Better Worse [0,10x) [10x,100x) [100x,+∞)
k-AVG+SBD 48 5 32 7 7 53 32 0
k-AVG+DTW 24 2 59 7 3 1 11 73

KSC 32 2 51 7 3 1 3 81
k-DBA 38 1 46 7 7 0 0 85

k-Shape+DTW 32 2 51 7 7 0 7 78
k-Shape 57 6 22 3 7 17 55 13
k-MS 64 3 18 3 7 3 46 36

Table 3.4: Comparison of k-means variants against k-AVG+ED. Columns “>,” “=,” and
“<” denote the number of datasets over which a method is better, equal, or worse, re-
spectively, in comparison to k-AVG+ED. “Better” indicates that a method outperforms
k-AVG+ED with statistical significance whereas “Worse” indicates that k-AVG+ED out-
performs a method with statistical significance. Columns “[0, 10x),” “[10x, 100x),” and
“[100x, +∞)” denote the number of datasets over which a method is slower up to 10x,
between 10x but no higher than 100x, and at least 100x, respectively, in comparison to
k-AVG+ED.

of k-DBA over that of k-AVG+DTW, with an average improvement in Rand Index of 19%.

Despite this improvement, k-DBA still does not perform better than k-AVG+ED in a statis-

tical significant manner.8 Another algorithm that modifies both the distance measure and

the centroid computation method of k-means is KSC. In contrast to k-DBA, KSC is signif-

icantly worse than k-AVG+ED. We note that this finding contradicts our previous analysis

on a subset of 48 datasets [Paparrizos and Gravano, 2015] where k-AVG+ED was shown

to perform better in 54% of the datasets, but not in a statistically significant manner. Our

current analysis is based on almost twice as many datasets as our analysis in [Paparrizos

and Gravano, 2015], which provides substantially more evidence to the Wilcoxon test. (The

p-value for Wilcoxon was very close to the confidence level in [Paparrizos and Gravano,

2015], which resulted in considering the difference in accuracy of k-AVG+ED and KSC

negligible.)

Comparison of k-MS against k-Shape: Having shown that inadequate modifications of

the distance and the centroid computation method of k-means do not improve accuracy, we

now evaluate k-Shape and k-MS, the only k-means variants with significant improvements

in accuracy over k-AVG+ED. Specifically, k-Shape performs better than k-AVG+ED in

8Even when multiple refinements of k-DBA’s centroids are performed per iteration, k-DBA still does not
outperform k-AVG+ED. In particular, performing five refinements per iteration improves the Rand Index
by 4% but runtime increases by 30% according to experiments over 48 datasets [Paparrizos and Gravano,
2015]. (These 48 datasets are a subset of the 85 datasets in our experiments.)
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Figure 3.8: Ranking of the best performing variants of k-means, namely, k-MS and k-Shape,
based on the average of their ranks across datasets.

1 2 3 4

k-MS
k-DBA

KSC
k-AVG+ED

Figure 3.9: Ranking of k-means variants based on the average of their ranks across datasets.
The wiggly line connects all techniques that do not perform statistically differently according
to the Nemenyi test.

67% of the datasets and k-MS performs better than k-AVG+ED in 75% of the datasets.

Importantly, in both of these comparisons, Wilcoxon indicates the superiority of k-Shape

and k-MS against k-AVG+ED. Comparing now the performance of k-Shape and k-MS, our

results show that k-MS performs better, equally, and worse in 59, 4, and 22 datasets, re-

spectively, in comparison to k-Shape. Importantly, Wilcoxon indicates that the difference in

accuracy of k-MS and k-Shape is statistically significant. Therefore, we can conclude that

k-Shape and k-MS are the only k-means variants that significantly outperform k-AVG+ED

and, importantly, k-MS is the only variant that significantly outperforms k-Shape.

Comparison against k-DBA and KSC: Both k-DBA and KSC are similar to k-Shape

and k-MS in that they all modify both the centroid computation method and the distance

measure of k-means. Therefore, to understand the impact of these modifications, we com-

pare them against our k-Shape and k-MS algorithms. k-Shape performs equally or better in

59 datasets in comparison to KSC and performs equally or better in 58 datasets in compar-

ison to k-DBA. In both of these comparisons, the statistical test indicates the superiority

of k-Shape. Similarly, k-MS performs equally or better in 62 datasets in comparison to

KSC and performs equally or better in 61 datasets in comparison to k-DBA. In all these

comparisons, the statistical test indicates the superiority of k-Shape and k-MS.

Statistical analysis: In addition to the pairwise comparisons performed with the Wilcoxon

test, we further evaluate the significance of the differences in algorithm performance when

considered all together. Figure 3.8 shows the average rank across datasets of k-MS, k-Shape,

and k-AVG+ED, the best performing scalable clustering methods. k-MS is the top method,
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with an average rank of 1.51, meaning that k-MS achieved better rank in the majority of

the datasets. The Friedman test rejects the null hypothesis that all algorithms behave sim-

ilarly, and, hence, we proceed with a post-hoc Nemenyi test, to evaluate the significance of

the differences in the ranks. We observe that the difference in ranks of each method are

statistically significant: k-Shape is significantly better than k-AVG+ED and, in turn, k-MS

is significantly better than k-Shape. Figure 3.9 shows the average rank across datasets of

k-MS and k-means variants that modify both the centroid computation method and the

distance measure of k-means. As before, k-MS is ranked first, with an average rank of 1.78.

We observe that the ranks of KSC, k-DBA, and k-AVG+ED do not present a statistically

significant difference, whereas k-MS, which is ranked first, is significantly better than the

others. We note that according to the Wilcoxon test, as mentioned earlier, KSC is signif-

icantly worse than k-AVG+ED. However, when KSC, k-DBA, k-AVG+ED, and k-MS are

considered collectively, KSC performs similarly to k-DBA and k-AVG+ED. (We observe

similar findings for k-Shape in our analysis over 85 datasets. We omit figures due to space

limitations. In [Paparrizos and Gravano, 2015], we provide such comparisons on a subset of

48 datasets.) To conclude, modifying k-means with inappropriate distance measures or cen-

troid computation methods might lead to unexpected results. The same holds for k-Shape,

where the use of DTW, in k-Shape+DTW, results in a significant drop in performance (i.e.,

k-Shape outperforms k-Shape+DTW with statistical significance in 60 out of 85 datasets).

Efficiency: k-Shape and k-MS are the only algorithms that outperform all k-means vari-

ants, including the simple, yet robust, k-AVG+ED. We now investigate whether the supe-

riority of k-Shape and k-MS in terms of accuracy has an associated penalty in efficiency.

Table 3.4 shows the number of datasets over which each method is slower than k-AVG+ED.

k-Shape is the fastest method that significantly outperforms k-AVG+ED. k-MS is slower

than k-Shape due to the additional cost required to compute more centroids. However,

k-MS remains only up to 10x slower than k-Shape in 93% of the datasets. Importantly,

k-MS remains significantly faster than all k-means variants that modify both the distance

and the centroid computation method of k-means. Specifically, KSC performs up to 10x,
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Algorithm > = < Better Worse
H-S+ED 17 1 67 7 3

H-S+cDTW 21 0 64 7 3
H-S+SBD 20 1 64 7 3
H-A+ED 16 0 69 7 3

H-A+cDTW 22 0 63 7 3
H-A+SBD 23 0 62 7 3
H-C+ED 28 0 57 7 3

H-C+cDTW 33 0 52 7 3
H-C+SBD 35 0 50 7 3
S+ED 27 1 57 7 3

S+cDTW 36 1 48 7 3
S+SBD 61 0 24 3 7

PAM+ED 43 1 41 7 7
PAM+cDTW 55 2 28 3 7
PAM+SBD 58 2 25 3 7

Table 3.5: Comparison of hierarchical, spectral, and k-medoids variants against k-
AVG+ED. Columns “>,” “=,” and “<” denote the number of datasets over which an
algorithm is better, equal, or worse, respectively, in comparison to k-AVG+ED. “Better”
indicates that an algorithm outperforms k-AVG+ED with statistical significance whereas
“Worse” indicates that k-AVG+ED outperforms an algorithm with statistical significance.

10x but less than 100x, and at least 100x slower than k-Shape, in 20%, 78%, and 2% of the

datasets, respectively. KSC performs up to 10x slower than k-MS in 60% of the datasets,

and 10x but less than 100x slower than k-MS in 40%. k-DBA performs at least 100x slower

than k-Shape in 74% of the datasets and at least 100x slower than k-MS in 44% of the

datasets.

3.6.4 Evaluation of k-Shape and k-MS Against Non-Scalable Methods

Up to now, we have focused our evaluation on scalable clustering algorithms. In order to

show the robustness of k-Shape and k-MS in terms of accuracy beyond scalable approaches,

we now ignore scalability and compare k-Shape and k-MS against clustering methods that

scale quadratically with the number of time series, namely, hierarchical, spectral, and k-

medoids methods.

Comparison against k-AVG+ED: Table 3.5 reports the performance of non-scalable

methods against k-AVG+ED. Among all existing state-of-the-art methods that use ED or

cDTW as distance measures, only partitional methods perform similarly to or better than

k-AVG+ED. In particular, PAM+cDTW is the only method that outperforms k-AVG+ED
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with statistical significance. PAM+ED achieves better performance in 51% of the datasets

in comparison to k-AVG+ED; however, this difference is not statistically significant. More-

over, PAM+cDTW performs better in 51 datasets, equal in 2 datasets, and worse in 32

datasets relative to PAM+ED. For this comparison, the statistical significance test indi-

cates the superiority of PAM+cDTW. We note that constraining the warping window for

DTW does not affect significantly the accuracy of clustering methods. Figure 3.10 shows

the ranking of PAM+DTW, PAM+cDTW5, PAM+cDTW10, and k-AVG+ED across all

datasets. PAM+DTW, PAM+cDTW5, and PAM+cDTW10 do not present significant dif-

ference in accuracy, but PAM+DTW is ranked first. This is contradictory to the findings

for the classification task where DTW was ranked last (see Figure 3.5).

All combinations of hierarchical clustering, with all different linkage criteria, perform

poorly in comparison to k-AVG+ED. Interestingly, k-AVG+ED outperforms all of them

with statistical significance. We observe that the major difference in performance among

hierarchical methods is attributed to the linkage criterion and not to the distance mea-

sure. This highlights the importance of the clustering method, in addition to the distance

measure for time-series clustering. Similarly to hierarchical methods, spectral methods

also perform poorly against k-AVG+ED. S+cDTW performs better in more datasets than

S+ED in comparison to k-AVG+ED: comparing S+cDTW with S+ED, S+cDTW achieves

similar or better accuracy in 41 datasets, but this difference is not significant. Impor-

tantly, k-AVG+ED is significantly better than both S+ED and S+cDTW. Therefore, for

hierarchical and spectral methods, these distance measures have a small impact on their

performance.

k-Shape and k-MS against H-C+cDTW, S+cDTW, and PAM+cDTW: Among

all methods using cDTW as distance measure that we evaluated, only PAM+cDTW out-

performs k-AVG+ED with statistical significance. Similarly to k-AVG+ED, k-Shape and

k-MS also outperform H-C+cDTW and S+cDTW with statistical significance. Therefore,

we compare this approach with k-Shape and k-MS. PAM+cDTW performs equally or better

in 45 datasets in comparison to k-Shape and equally or better in 41 datasets in comparison
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Figure 3.10: Ranking of partitional methods that outperform k-AVG+ED based on the
average of their ranks across datasets. The wiggly line connects all techniques that do not
perform statistically differently according to the Nemenyi test.
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Figure 3.11: Ranking of methods that outperform k-AVG+ED based on the average of
their ranks across datasets. The wiggly line connects all techniques that do not perform
statistically differently according to the Nemenyi test.

to k-MS, but these differences are not significant.

For completeness, we also evaluate SBD with hierarchical, spectral, and k-medoids meth-

ods. For hierarchical methods, H-C+SBD is better than H-A+SBD, and, in turn, H-A+SBD

is better than H-S+SBD, all with statistical significance. S+SBD, in contrast to S+ED and

S+cDTW, outperforms k-AVG+ED in 61 out of 85 datasets, with statistical significance.

We note that S+SBD is the method that outperforms k-AVG+ED in the largest number of

datasets (72%) than any other method evaluated in this work. S+SBD is also significantly

better than S+ED and S+cDTW, but S+SBD does not outperform k-Shape or k-MS. Sim-

ilarly, PAM+SBD performs better in 58, equal in 2, and worse in 25 datasets in comparison

to k-AVG+ED. The statistical test suggests that PAM+SBD is significantly better than

k-AVG+ED but not better than k-Shape or k-MS.

Statistical analysis: We evaluate the significance of the differences in algorithm perfor-

mance for all algorithms that significantly outperform k-AVG+ED. Our analysis indicates

similar behavior for k-Shape and k-MS and, therefore, we omit k-Shape to simplify our

analysis and visualizations. Figure 3.11 shows that k-MS, PAM+SBD, PAM+cDTW, and

S+SBD do not present a significant difference in accuracy, whereas k-AVG+ED, which is

ranked last, is significantly worse than the others.

From our extensive evaluation of existing clustering approaches for time series that

use ED, cDTW, or DTW as distance measures, PAM+cDTW is the only approach that

achieves similar — but not better — results compared to k-Shape and k-MS. In contrast
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Algorithm > = < Better Worse
DBSCAN3+ED 25 0 60 7 3

DBSCANBest+ED 32 0 53 7 3

DBSCAN3+SBD 26 0 59 7 3

DBSCANBest+SBD 33 0 52 7 3

DBSCAN3+cDTW 30 0 55 7 3

DBSCANBest+cDTW 37 0 48 7 3

TADPole3 35 1 49 7 7

TADPoleBest 41 1 43 7 7

U-Shapelets0.5 31 0 54 7 3

U-ShapeletsBest 44 0 41 7 7

Table 3.6: Comparison of variants of density-based and shapelet-based methods against
k-AVG+ED. Columns “>,” “=,” and “<” denote the number of datasets over which an
algorithm is better, equal, or worse, respectively, in comparison to k-AVG+ED. “Better”
indicates that an algorithm outperforms k-AVG+ED with statistical significance whereas
“Worse” indicates that k-AVG+ED outperforms an algorithm with statistical significance.
“Rand Index” denotes the accuracy achieved in the 85 datasets.

to k-Shape and k-MS, PAM+cDTW has two drawbacks that make it an unrealistic choice

for time-series clustering: (i) its distance measure, cDTW, requires tuning to improve its

performance and reduce the computation cost; and (ii) the computation of the dissimilarity

matrix that PAM+cDTW requires as input makes it unable to scale in both time and space.

For example, the matrix computation alone is already two orders of magnitude slower than

the computation required by k-Shape.

3.6.5 Evaluation of k-Shape and k-MS Against Outlier-Aware Methods

Previously, we focused our evaluation on state-of-the-art scalable and non-scalable cluster-

ing methods that do not exploit any particular mechanism to handle outliers in the datasets.

We now evaluate k-Shape and k-MS against two outlier-aware methods, namely, DBSCAN

and TADPole (see Section 3.5).

Comparison against k-AVG+ED: Table 3.6 reports the performance of outlier-aware

methods (see Section 3.5) against k-AVG+ED, using their Rand Index on the 85 datasets

(see Section 3.5). From all these approaches, none outperforms k-AVG+ED and, impor-

tantly, k-AVG+ED significantly outperforms all variants of DBSCAN. In particular, k-

AVG+ED achieves better performance in 71%, 69%, and 65% of the datasets in comparison

to DBSCAN3+ED, DBSCAN3+SBD, and DBSCAN3+cDTW, respectively. DBSCAN3+cDTW
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is the strongest of the combinations of DBSCAN with other distance measures. Specifically,

DBSCAN3+cDTW performs at least as well as DBSCAN3+ED in 50 datasets and at least

as well as DBSCAN3+SBD in 45 datasets. However, the Wilcoxon test suggests that these

differences in accuracy are not statistically significant.

Similarly to DBSCAN, TADPole does not outperform k-AVG+ED. Specifically, k-

AVG+ED performs at least as well as TADPole3 in 50 datasets, but this difference is not sig-

nificant. Comparing DBSCAN and TADPole, we observe that TADPole3 significantly out-

performs all DBSCAN variants. In particular, TADPole3 outperforms DBSCAN3+cDTW,

DBSCAN3+SBD, and DBSCAN3+ED in 54, 56, and 55 datasets, respectively.

As discussed in Section 3.5, both DBSCAN and TADPole require as input two pa-

rameters. For fairness in the comparison, we now also report experimental results for the

DBSCAN and TADPole variants when they receive as input the best performing parame-

ters for each dataset, as described in Section 3.5. DBSCANBest+cDTW performs at least

as well as DBSCANBest+ED and DBSCANBest+SBD in 46 datasets, but these differences

are not statistically significant. Interestingly, k-AVG+ED performs at least as well as

DBSCANBest+cDTW in 48 datasets, at least as well as DBSCANBest+SBD in 52 datasets,

and at least as well as DBSCANBest+ED in 53 datasets, and all these differences in accu-

racy are statistically significant. In contrast, k-AVG+ED performs equally or better in 44

in comparison to TADPoleBest, but this difference in accuracy is not statistically significant.

Comparison against k-Shape and k-MS: Among all density-based methods we evalu-

ated, none outperformed k-AVG+ED with statistical significance. Therefore, even though

k-Shape and k-MS are significantly better than k-AVG+ED, we evaluate k-Shape and k-MS

against all density-based methods. Similarly to k-AVG+ED, k-Shape and k-MS also sig-

nificantly outperform DBSCAN3+ED, DBSCAN3+SBD, and DBSCAN3+cDTW. In par-

ticular, k-Shape and k-MS perform at least as well as DBSCAN3+cDTW in 74% of the

datasets. In contrast to k-AVG+ED, k-Shape significantly outperforms TADPole3 in 70%

of the datasets and k-MS significantly outperforms TADPole3 in 74% of the datasets.

Statistical Analysis: Up to now, we evaluated density-based methods pairwise. We now
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Figure 3.12: Ranking of TADPole3, DBSCAN3, k-AVG+ED, and k-MS based on the average
of their ranks across datasets. The wiggly line connects all techniques that do not perform
statistically differently according to the Nemenyi test.
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Figure 3.13: Ranking of U-Shapelets0.5, k-AVG+ED, and k-MS based on the average of
their ranks across datasets. The wiggly line connects all techniques that do not perform
statistically differently according to the Nemenyi test.

evaluate the significance of the differences in algorithm performance for the best performing

density-based methods when considered collectively. The Friedman test rejects the null hy-

pothesis that all algorithms behave similarly, and, hence, as before, we proceed with a post-

hoc Nemenyi test. Figure 3.12 shows that TADPole3 and DBSCAN3+cDTW do not exhibit

a significant difference in accuracy. However, in contrast to TADPole3, DBSCAN3+cDTW

is significantly worse than k-AVG+ED. k-MS, which is ranked first, is significantly better

than both density-based methods. (We omit similar results for k-Shape.)

3.6.6 Evaluation of k-Shape and k-MS Against a Shapelet-Based Method

Up to now, we have evaluated k-Shape and k-MS against scalable, non-scalable, and outlier-

aware time-series clustering methods. To conclude our analysis, we now evaluate our algo-

rithms against U-Shapelets, a shapelet-based method that exploits patterns in subsequences

of the entire time series (see Section 3.5).

Comparison against k-AVG+ED: The last two rows of Table 3.6 report the performance

of U-Shapelets variants against k-AVG+ED, using their Rand Index on the 85 datasets

(see Section ??). These two variants do not outperform k-AVG+ED and, importantly,

k-AVG+ED significantly outperforms U-Shapelets0.5. In particular, k-AVG+ED performs

better in 54 and worse in 31 datasets in comparison to U-Shapelets0.5. For completeness,

we note that U-ShapeletsBest significantly improves the performance of U-Shapelets. In

particular, U-ShapeletsBest performs better in 57 and equal in 28 datasets in comparison to
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U-Shapelets0.5. U-ShapeletsBest performs better in 44 and worse in 41 datasets in compar-

ison to k-AVG+ED but the difference in accuracy is not statistically significant.

Comparison against DBSCAN3+cDTW and TADPole3: We now evaluate the per-

formance of U-Shapelets0.5 against density-based methods. U-Shapelets0.5 performs better

in 52, equal in 1, and worse in 32 datasets in comparison to the best performing DBSCAN

variant, namely, DBSCAN3+cDTW. The Wilcoxon text suggests that this difference in

accuracy is not statistically significant, but with a p-value close to the confidence level.

Similarly, TADPole3 performs at least as well as U-Shapelets0.5 in 47 datasets, but this

difference in accuracy is not statistically significant.

Comparison against k-Shape and k-MS: Among all shapelet-based methods we evalu-

ated, none outperformed k-AVG+ED. Therefore, even though k-Shape and k-MS are signif-

icantly better than k-AVG+ED, we evaluate k-Shape and k-MS against the best performing

shapelet-based method: both k-Shape and k-MS outperform U-Shapelets0.5 in 57 out of 85

datasets. The Wilcoxon test suggests that this difference in accuracy is significant.

Statistical Analysis: Having shown the superiority of k-Shape and k-MS against U-

Shapelets0.5, we now conclude our analysis with an evaluation of the significance of the dif-

ferences in algorithm performance when considered collectively. The Friedman test rejects

the null hypothesis that all algorithms behave similarly, and, hence, as before, we proceed

with a post-hoc Nemenyi test. Figure 3.13 shows that k-AVG+ED and U-Shapelets0.5 do

not present a significant difference, whereas k-MS, which is ranked first, is significantly

better than k-AVG+ED and U-Shapelets0.5. (We omit similar results for k-Shape.)

3.6.7 Evaluation of NSC Against Data Editing Methods

Up to now, we have demonstrated the robustness of k-Shape and k-MS as standalone

clustering methods for time series. In this section, we evaluate the performance of k-Shape,

our simplest—and competitive—clustering method, as a subroutine to effectively reduce

the search space of one-nearest-neighbor algorithms.

We perform three experiments to assess the performance of NSC against rival methods.



CHAPTER 3. EFFICIENT AND ACCURATE TIME-SERIES CLUSTERING 79

Algorithm k=1 k=2 k=3 k=4
Random 2.919 2.713 3.081 2.978
RT1 3.603 3.706 3.331 3.404
RT2 3.132 3.132 3.147 3.140
RT3 3.684 3.926 3.824 3.853
NSC 1.662 1.522 1.618 1.625

RBest-RNSC 1.257 1.191 1.463 1.353

Table 3.7: Comparison of Random, RT1, RT2, RT3, and NSC. Columns “k=1,” “k=2,”
“k=3,” and “k=4” denote the average ranking, in terms of accuracy, of each algorithm over
75 datasets when k centroids represent each class. The last row represents the difference
in ranking of the best performing rival method and NSC. Differences higher than 0.55 are
considered statistically significant according to the Nemenyi test.

First, following [Petitjean et al., 2014; Petitjean et al., 2016], we evaluate performance

when a limited number of centroids are allowed per class. Second, we evaluate the impact

of several key characteristics of the methods. Third, we compare the performance of 1-NN

classifiers against three variants of NSC, namely, NSC+ED, NSC+SBD, and NSC+cDTW.

The first two experiments are over the 75 datasets—out of the 85 datasets—for which all

algorithms terminated after running continuously for one week, as discussed in Section 3.5.

In contrast, the third experiment, which is based solely on the efficient NSC, is over the full

set of 85 datasets.

Table 3.7 reports the average rank, in terms of accuracy, of Random, RT1, RT2, RT3,

and NSC when k centroids represent each class in the training set.9 NSC is the top method

for all values of k that we considered, meaning that NSC achieved higher accuracy in

the majority of the datasets. Specifically, NSC significantly outperforms each of the rival

methods in at least 80% of the datasets for all values of k, according to Wilcoxon. To

understand the performance of NSC in comparison with Random, RT1, RT2, and RT3, we

also evaluate the significance of their differences in accuracy when considered all together.

The Friedman test rejects the null hypothesis that all algorithms behave similarly for all

values of k and, hence, we proceed with a post-hoc Nemenyi test. The last row in Table 3.7

shows the difference in ranks of NSC and the best performing method. According to the

Nemeyi test, differences higher than 0.55 are significant. Therefore, for all different values

9We vary k from 1 to 4 in order to include datasets with a small number of instances per class.
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Algorithm Average Rank Initialization Cost Query Time Improvement Amortization Cost
[0,10x) [10x,100x) [100x,+∞) [0,25) [25,50) [50,75) [75,100] [0,10x) [10x,100x) [100x,+∞)

RT1 2.838
40 30 5

48 10 7 10
9 17 48RT2 2.561 43 9 10 13

RT3 2.696 45 7 12 11
NSC 1.905 49 26 0 21 8 11 35 45 16 14

Table 3.8: Comparison of RT1, RT2, RT3, and NSC. Column “Average Rank” denotes the
average rank in terms of the number of centroids required to outperform the corresponding
1-NN accuracy. Column “Initialization Cost” denotes the number of datasets over which
an algorithm requires up to 10x (column “[0, 10x)”), between 10x but no higher than 100x
(column “[10x, 100x)”), and at least 100x (column “[100x, +∞)”) more preprocessing than
the version of the Random method with the corresponding distance. Column “Query Time
Improvement” indicates the number of datasets over which an algorithm improves the query
response time up to 25% (column “[0, 25)”), from 25% to 50% (column “[25, 50)”), from
50% to 75% (column “[50, 75)”), and from 75% to 100% (column “[75, 100)”) relative to
the corresponding 1-NN. Column “Amortization Cost” denotes the number of datasets over
which an algorithm requires to increase the number of queries up to 10x (column “[0, 10x)”),
between 10x but no higher than 100x (column “[10x, 100x)”), and at least 100x (column
“[100x, +∞)”) relative to the corresponding 1-NN to amortize the initialization cost.

of k, the difference in the rank of NSC against all rival methods is statistically significant.

Having shown the superiority in terms of accuracy of NSC against other methods, we

now explore the impact on four important characteristics of NSC, RT1, RT2, and RT3

in their attempt to outperform their corresponding 1-NN classifier.10 In Table 3.8, we

first evaluate the methods based on the number of instances required to outperform their

corresponding 1-NN classifier. NSC is the top method, meaning that NSC required fewer

centroids than the other methods to outperform its corresponding 1-NN classifier in the

majority of datasets. The Friedman test rejects the null hypothesis that all algorithms

behave similarly and, hence, we proceed as before with a post-hoc Nemenyi test. According

to Nemenyi, the difference in the rank of NSC against all rival methods is statistically

significant.

We then investigate the associated initialization cost for each method to outperform the

corresponding 1-NN classifiers. Considering that 1-NN classifiers require no preprocessing

of the instances in the training set (i.e., the initialization cost of 1-NN classifiers is negligi-

ble), we measure the initialization cost of each method against the corresponding Random

10We exclude the Random method from this experiment as Random could not outperform 1-NN classifier
with cDTW5 in the majority of the datasets.
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method. NSC performs up to 10x slower than Random in 65% of the datasets, while in the

remaining 35% of the datasets NSC performs between 10x but no higher than 100x slower

in comparison to Random. In contrast, RT1, RT2, and RT3 perform up to 10x, between

10x but no higher than 100x, and at least 100x slower than Random in 53%, 40%, and 7% of

the datasets, respectively.11 Therefore, we can conclude that NSC is faster at preprocessing

the instances in the training set than all other reduction techniques.

Considering that all methods significantly reduce the number of instances in the training

set in comparison with 1-NN classifiers, we now evaluate the associated improvement in

query runtime in comparison with the corresponding 1-NN classifiers. Specifically, NSC

reduces the query response time by at least 50% in 61% of the datasets. In contrast, the

best reduction techniques, namely, RT1 and RT2, reduce the query response time by at

least 50% in 31% of the datasets. Therefore, NSC reduces the query response time by at

least 50% in approximately twice as many datasets as do the reduction techniques.

Finally, we report the number of queries each method has to process to amortize the

initialization cost in comparison with the associated 1-NN classifiers. NSC increases the

number of queries up to 10x in 60% of the datasets and by at least 10x in 40% of the

datasets in order to amortize the initialization cost. In contrast, the reduction techniques

increase the number of queries up to 10x in 13% of the datasets and by at least 10x in 67%

of the datasets. Therefore, we can conclude that NSC is a competitive method to reduce

the instances required for training the 1-NN classifiers. NSC is significantly more accurate

than rival methods, requires fewer centroids to effectively summarize the search space, and

yields important reductions in query response time in comparison with 1-NN classifiers.

Having shown the superiority of NSC against other data editing techniques, we now

evaluate the effectiveness of NSC when combined with competitive distance measures. Ta-

ble 3.9 reports the performance of NSC+SBD and NSC+cDTW against NSC+ED on 85

11Considering that all reduction techniques are statistically indistinguishable in terms of accuracy and
number of instances required to outperform 1-NN classifier with cDTW5, in Table 3.8 we only report the
“Initialization Cost” and the “Amortization Cost” of the best performing reduction technique, namely, RT2,
in order to simplify our analysis.
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Algorithm > = < Better Worse
NSC+cDTW 53 2 30 3 7

NSC+SBD 67 3 15 3 7

Table 3.9: Comparison of NSC+cDTW and NSC+SBD against NSC+ED. Columns “>,”
“=,” and “<” denote the number of datasets over which an algorithm is better, equal, or
worse, respectively, in comparison to NSC+ED. “Better” indicates that an algorithm out-
performs NSC+ED with statistical significance whereas “Worse” indicates that NSC+ED
outperforms an algorithm with statistical significance.
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Figure 3.14: Comparison of NSC+SBD against NSC+ED (a), NSC+cDTW against
NSC+ED (b), and NSC+SB against NSC+cDTW (c) over 85 datasets. Circles above the
diagonal indicate datasets over which the method in the vertical axis has better accuracy
than the method in the horizontal axis.

datasets. Both NSC+SBD and NSC+cDTW significantly outperform NSC+ED. In par-

ticular, NSC+SBD performs at least as well as NSC+ED in 82% of the datasets and

NSC+cDTW performs at least as well as NSC+ED in 65% of the datasets. Figure 3.14

presents pairwise differences in accuracy between NSC variants over 85 datasets. Each

circle in Figures 3.14a, 3.14b, and 3.14c represents a dataset; the first coordinate of each

circle corresponds to the classification accuracy of the method in the horizontal axis and the

second coordinate of each circle corresponds to the classification accuracy of the method

in the vertical axis. Circles above the diagonal indicate datasets over which the method

in the vertical axis has better accuracy than the method in the horizontal axis. Specifi-

cally, Figures 3.14a and 3.14b illustrate the superiority of NSC+SBD and NSC+cDTW

against NSC+ED, respectively. In contrast, NSC+SBD performs better in 45, equal in

1, and worse in 39 datasets in comparison to NSC+cDTW. Wilcoxon suggests that this

difference in accuracy is not statistically significant. Figure 3.14c shows the performance of
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1 2 3
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Figure 3.15: Ranking of nearest shape classifier methods based on the average of their ranks
across datasets. The wiggly line connects all techniques that do not perform statistically
differently according to the Nemenyi test.

NSC+SBD against NSC+cDTW. In addition to the pairwise comparisons performed with

Wilcoxon, we further evaluate the significance of the differences in algorithm performance

when considered collectively. Figure 3.15 shows the average rank across datasets of each

NSC variant. NSC+SBD is the top method, with an average rank of 1.66, meaning that

NSC+SBD achieved better rank than NSC+ED and NSC+cDTW in the majority of the

datasets. The Friedman test rejects the null hypothesis that all algorithms behave similarly

and, hence, we proceed with a post-hoc Nemenyi test, to evaluate the significance of the

differences in the ranks. We observe that the ranks between NSC+SBD and NSC+cDTW

do not present any significant difference, whereas NSC+ED, which is ranked last, is signif-

icantly worse than the others.

Considering now the performance of NSC and 1-NN variants for the same distances

collectively, we observe no significant difference between NSC+SBD and 1-NN+SBD, and

no significant difference between NSC+ED and 1-NN+ED. However, NSC+cDTW is sig-

nificantly worse than 1-NN+cDTW, which indicates that k-Shape is not an appropriate

clustering method to compute centroids when cDTW is used. Instead, other methods, such

as PAM+cDTW or k-DBA, would be preferable in conjunction with cDTW.

In conclusion, k-Shape is an effective method to summarize time series, and 1-NN clas-

sifiers can benefit from using k-Shape as a subroutine to significantly reduce their search

space. Importantly, these findings have implications in settings where time-series clas-

sification methods operate under limited computational resources [Petitjean et al., 2014;

Petitjean et al., 2016] or within a tight time budget [Ding et al., 2015; Pelkonen et al.,

2015].
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3.6.8 Summary of Experimental Evaluation

In short, our experimental evaluation suggests that: (1) cross-correlation measures (e.g.,

SBD), which are not widely adopted as time-series distance measures, are as competitive as

state-of-the-art measures, such as cDTW and DTW, but significantly faster; (2) only the

optimally tuned cDTW measure significantly outperforms the DTW measure when 1-NN

classification is used to evaluate distance measures, in contrast to the belief that cDTW

generally improves the accuracy of DTW; (3) for time-series clustering, the DTW measure

often achieves better performance than the cDTW measure, which contradicts the findings

under 1-NN classification; (4) the k-means algorithm with ED, in contrast to what has been

reported in the literature, is a robust approach for time-series clustering, but inadequate

modifications of its distance measure and centroid computation can reduce its performance;

(5) the choice of clustering method, such as partitional versus density-based methods, which

was believed to be less important than that of distance measure, is as important as the choice

of distance measure; (6) the intrinsic characteristics of clustering algorithms, such as the

linkage criterion in hierarchical clustering, are more important than the choice of distance

measures; (7) the attempts to isolate and ignore abnormal behaviors in time series can

significantly hurt the performance of outlier-aware clustering methods; (8) k-Shape and k-

MS are highly accurate and efficient methods for time-series clustering; and (9) exploiting

clustering methods, such as k-Shape, as subroutines to reduce the search space of 1-NN

algorithms can lead to fast and accurate classification methods for time series.

3.7 Conclusions

In this chapter, we addressed the problem of domain-independent, accurate, and scalable

time-series clustering (Section 3.2.4). We summarize the contributions of this chapter as

follows: (i) we showed how to derive SBD, a scale-, translate-, and shift-invariant distance

measure, in a principled manner from cross-correlation and how to efficiently compute

this measure by exploiting intrinsic characteristics of Fourier transform algorithms (Section
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3.3.1); (ii) we presented SE and MSE, two novel methods to compute a single centroid or

multiple centroids per cluster when the SBD distance measure is used (Section 3.3.2); (iii)

we developed k-Shape and k-MS, two novel algorithms for time-series clustering that rely

on the SBD distance measure to compare time series; k-Shape relies on the SE method

to compute a single centroid per cluster based on the entire set of time series in each

cluster, whereas k-MS relies on MSE to compute multiple centroids per cluster in order to

consider the proximity and spatial distribution of time series in each cluster (Section 3.3.3);

(iv) we presented NSC, a one-nearest-neighbor classification algorithm that relies on k-

Shape as subroutine to reduce the search space of one-nearest-neighbor algorithms (Section

3.4); and (v) we performed an extensive experimental evaluation of SBD, k-Shape, k-MS,

and NSC against state-of-the-art time-series distance measures, clustering algorithms, and

classification algorithms (Sections 3.5 and 3.6).

Our findings show that SBD is an efficient and parameter-free distance measure that

achieves similar results to the most accurate but computationally expensive distance mea-

sures that require parameter tuning. k-Shape and k-MS outperform all state-of-the-art scal-

able and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based

clustering approaches, with only one method achieving similar performance. Interestingly,

this method is significantly slower than both k-Shape and k-MS and, importantly, its dis-

tance measure requires tuning. Finally, exploiting clustering methods, such as k-Shape, as

subroutines to reduce the search space of 1-NN algorithms can lead to fast and accurate

classification methods for time series. Consequently, we believe that SBD, k-Shape, k-MS,

and NSC emerge as domain-independent, accurate, and scalable approaches for time-series

comparison, clustering, and classification. Importantly, our approaches can serve as core

components in the development of efficient and accurate methods for other tasks over time

series. In fact, in Chapter 4 we build on principles behind SBD to develop an efficient

kernel function for time-series comparison that significantly outperforms existing kernels

that operate over the full length of the time series. Additionally, we show how k-Shape can

serve as a core subroutine for learning time-series representations.
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Chapter 4

Efficient Time-Series

Representation Learning

In Chapter 3, we presented general purpose, scalable, yet accurate, clustering algorithms for

time series. Our algorithms compare time series efficiently and compute centroids effectively

under the scaling, translation, and shift invariances. In this chapter, we exploit the simplest

version of our time-series clustering algorithms, namely k-Shape, to extract dictionaries of

time series that meaningfully summarize time-series collections. Our goal is to develop a

generic framework capable to represent the time series as a linear combination of the time se-

ries in a dictionary. In contrast to existing time-series representation methods, our approach

enables the learning of low-dimensional representations that preserve the similarities, as de-

fined by a user-specified similarity function, of time-series in the high-dimensional space.

Therefore, our representations seamlessly integrate with existing data mining methods to

solve tasks of critical importance in time-series analysis. First, we provide an overview

for that problem and review the associated challenges (Section 4.1). Second, we describe

necessary background for linear and non-linear dimensionality reduction methods (Section

4.2). Third, we present our efficient, data-aware, time-series representation learning frame-

work (Section 4.3) and show how to leverage learned time-series representation to solve

major time-series mining tasks (Section 4.4). Then, we summarize our extensive experi-
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Figure 4.1: Comparison of classification accuracies across 85 datasets using raw representa-
tions against representations of length 20 computed with DFT and KPCA+WINK. Circles
over the diagonal indicate datasets over which raw representations outperform compact
representations.

mental evaluation (Sections 4.5 and 4.6). Finally, we conclude with the contributions of

this chapter (Section 4.7).

4.1 Overview and Motivation

Time series are often the outcome of sequentially recording time-varying measurements

of an underlying process [Esling and Agon, 2012]. Recent technological advances permit

the collection of enormous amounts of time-varying measurements across scientific and

industrial applications [Palpanas, 2015; Mahdavinejad et al., 2017]. For example, data-

intensive applications in astronomy [Alam et al., 2015] and neuroscience [Biswal et al., 2010]

involve millions of time series. Similarly, infrastructure monitoring systems of large-scale

internet services handle billions of time-stamped measurements per day [Loboz et al., 2010;

Pelkonen et al., 2015; Jasta, 2016]. With sensors becoming cheap and ubiquitous and with

the explosion of Internet of Things applications, the rapid growth of time-series volumes

is expected to continue [Mahdavinejad et al., 2017]. Consequently, time-series analysis

algorithms will have to operate over increasingly massive time-series collections.

State-of-the-art methods for most time-series mining tasks, such as clustering [Liao,
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2005] and classification [Bagnall et al., 2017], cannot scale to millions of time series. The

temporal ordering and the high dimensionality of the observations, combined with the large

volumes of time series, introduce severe challenges not shared with the analysis of other

types of data [Yang and Wu, 2006; Esling and Agon, 2012]. Specifically, the temporal

ordering may introduce distortions (see Section 4.2.3), which complicate the definition of

similarity functions to compare time series that agree with human perception. In addition,

the high dimensionality increases the computation and storage requirements of methods

operating directly over time series. Finally, the large volumes of time series can make ef-

fective methods over moderate-sized collections appear impractical in large-scale settings.

To address these challenges, the design of scalable and effective time-series mining methods

involves decisions for three core components [Esling and Agon, 2012]: (i) the representation

method to construct low-dimensional representations that preserve fundamental character-

istics of time series; (ii) the comparison method, which should offer invariances to inherent

distortions in time series; and (iii) the indexing method, which organizes time series to

facilitate fast retrieval from massive collections.

There has been significant effort to propose and optimize methods for each of the three

components separately [Esling and Agon, 2012], which led to a mismatch among the char-

acteristics preserved by representations methods, the invariances offered by effective, yet

computationally expensive, similarity functions, and the properties imposed on similarity

functions by indexing mechanisms. Therefore, existing time-series mining methods suffer

from a number of drawbacks: (i) these methods become prohibitively expensive as they

operate directly over raw time series to avoid information loss from direct exploitation of

representations (e.g., this is the case for most classification methods [Bagnall et al., 2017]);

(ii) these methods sacrifice accuracy for efficiency as they directly exploit representations

(e.g., this is the case for online clustering methods that only support less-effective `p-norms

[Ding et al., 2015]); or (iii) these methods follow a complicated, two-step approach to in-

directly exploit representations to prune part of the expensive pairwise comparisons (e.g.,

this is the case for querying methods that exploit representations that do not preserve
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invariances offered by the chosen similarity function [Yi et al., 1998; Kim et al., 2001;

Sakurai et al., 2005b; Keogh and Ratanamahatana, 2005; Rakthanmanon et al., 2012]).

The two-step approach is the most prominent paradigm to accelerate time-series mining

methods while addressing all aforementioned challenges. The requirement to perform two

steps is due to the dependence on the seminal GEMINI framework [Agrawal et al., 1993;

Faloutsos et al., 1994], which laid the foundations for fast time-series retrieval under Eu-

clidean distance (ED). Specifically, GEMINI (i) constructs low-dimensional representations;

and (ii) defines a measure over such representations to lower bound (i.e., prune part of) the

ED comparisons in the high-dimensional space. For different distance measures, two-step

approaches [Yi et al., 1998; Kim et al., 2001; Sakurai et al., 2005b; Keogh and Ratanama-

hatana, 2005] additionally show that ED lower bounds the new distance. The plethora

of representation and comparison methods [Esling and Agon, 2012; Wang et al., 2013;

Bagnall et al., 2017], along with the difficulty in developing effective lower bounding mea-

sures, impact the sustainability of such methodology.

To simplify and unify the design of scalable time-series mining methods, we need a new

primitive to automatically learn low-dimensional representations that builds on and extends

the principles of GEMINI. Specifically, given a comparison method, the learned representa-

tion: (P1) preserves the pairwise similarities; (P2) lower bounds the comparison method;

(P3) permits reusing part of its coordinates; (P4) supports efficient and memory-tractable

similarity computation for available and new data; and (P5) supports efficient and mem-

ory tractable eigendecomposition of the data-to-data matrix. Through these principles, the

learned representation: (i) leverages methods relying on feature-vectors (P1); (ii) permits

time-series querying and indexing (P2); (iii) scales methods under limited resources (P3);

(iv) enables operations in online settings (P4); and (v) exploits highly effective methods

relying on eigendecomposition (P5).

A promising direction to develop such framework arises with the use of kernel methods,

which have been successfully used in the analysis of complex, real-world, data. [Cortes

and Vapnik, 1995; Hofmann et al., 2008; Schölkopf et al., 1998; Schölkopf and Smola, 2002;
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Bach and Jordan, 2005]. In contrast to other methods that operate directly over data, kernel

methods interact with data only through pairwise comparisons. Due to the difficulty in de-

signing kernel functions to assess the similarity between time series, kernel methods remain

largely unexplored in the analysis of time series. However, given a suitable kernel function,

kernel methods show great promise for unifying the way we model data, learn represen-

tations of the data, and design algorithms. Specifically, given a kernel matrix, consisting

of pairwise similarities computed with a chosen kernel function, Kernel Principal Compo-

nent Analysis (KPCA) [Schölkopf et al., 1997] constructs representations that preserve the

properties of this kernel function. To illustrate this point, in Figure 4.1 we compare the

one-nearest-neighbor (1NN) classification accuracies across 85 datasets [Keogh et al., 2015]

using raw time-series representations against representations of length 20 computed by Dis-

crete Fourier Transform (DFT), a state-of-the-art representation method [Wang et al., 2013;

Schäfer and Högqvist, 2012], and KPCA with WINK (KPCA+WINK), our kernel func-

tion that we discuss later. DFT representations show a significant reduction in accuracy in

comparison to the state-of-the-art constrained Dynamic Time Warping (cDTW) [Sakoe and

Chiba, 1978] distance measure over raw time series. Instead, KPCA+WINK representations

achieve accuracy comparable to cDTW. Despite the remarkable accuracy, KPCA+WINK

suffers from high space (quadratic) and runtime (cubic) requirements, with respect to the

number of time series (see Section 4.2.4).

To alleviate the burdens associated with the high memory and runtime costs of (i)

computing the kernel matrix and (ii) performing dimensionality reduction with KPCA, we

present a Generic RepresentAtIon Learning (GRAIL) framework to automatically learn low-

dimensional representations in linear space and time. Considering the importance of shift-

and warp-invariant comparison methods (see Section 4.2.3), we first develop WINK, a novel,

highly efficient, kernel function. Then, GRAIL relies on (i) the Nyström method [Nyström,

1930; Williams and Seeger, 2001; Drineas and Mahoney, 2005] to construct a temporal rep-

resentation to approximate the kernel matrix; and (ii) matrix sketching [Liberty, 2013] over

the temporal representation to approximate the eigendecomposition of the kernel matrix
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and learn the final representation. The effectiveness of Nyström critically depends on the

choice of landmark time series, a difficult combinatorial problem. On the other side, the

compactness and the quality of the learned representations rely on an accurate estimation

of kernel function parameters. To address these issues, GRAIL computes landmark time

series using k-Shape, our highly accurate and scalable time-series clustering algorithm (see

Chapter 3). Based on the landmark time series, GRAIL optimizes necessary parameters

and constructs low-dimensional representations by expressing time series as a linear combi-

nation of the landmark time series. GRAIL representations seamlessly integrate with and,

therefore, accelerate, the vast literature of kernel methods [Schölkopf and Smola, 2002]. In

particular, we focus on five tasks of critical importance in time-series analysis [Esling and

Agon, 2012], namely, (i) clustering; (ii) classification; (iii) querying; (iv) sampling; and (v)

visualization of time series.

To demonstrate the robustness of WINK and GRAIL, we perform an extensive evalu-

ation on 85 datasets and compare their performance against state-of-the-art methods on

all five tasks. We use public datasets and make our source code available to ensure the

reproducibility of our results. In summary, we show that kernel classifiers using WINK can

significantly outperform 1NN classifiers with state-of-the-art distance measures [Esling and

Agon, 2012; Wang et al., 2013; Bagnall et al., 2017], which debunks a long-standing per-

ception in the time-series literature that 1NN classifiers are difficult to beat [Xi et al., 2006;

Wang et al., 2013; Bagnall et al., 2017]. GRAIL representations are more compact than

current representations and achieve better pruning power than hand-crafted lower bounding

measures. Importantly, GRAIL representations, when combined with suitable kernel meth-

ods, significantly outperform state-of-the-art approaches in all five aforementioned tasks.

We start with an in-depth review of the relevant background (see Section 4.2). We

continue as follows:

• We develop WINK, a kernel function to compare time series under shift- and warp-

invariances (Section 4.3.1).

• We construct landmark time series for Nyström using an effective time-series clustering
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method (Section 4.3.2).

• We present a method to estimate kernel function parameters and compactness of repre-

sentations (Section 4.3.3).

• We learn GRAIL representations by approximating the eigendecomposition of the kernel

matrix (Section 4.3.4).

• We show how GRAIL representations accelerate kernel methods for major time-series

mining tasks (Section 4.4).

• We evaluate our ideas by conducting an extensive experimental evaluation (Sections 4.5

and 4.6).

Finally, we conclude and discuss the implications of our work (Section 4.7). We now review

necessary background and define our problem of focus in this chapter.

4.2 Preliminaries

In this section, we describe linear dimensionality reduction methods (Section 4.2.1). We

summarize time-series representation methods (Section 4.2.2) and common time-series dis-

tortions and distance measures (Section 4.2.3). Then, we review nonlinear dimensionality

reduction methods (Section 4.2.4) along with relevant approximate methods (Section 4.2.5).

Finally, we present our problem of focus (Section 4.2.6).

4.2.1 Linear Dimensionality Reduction

Dimensionality reduction is the process of mapping high-dimensional vectors into a low-

dimensional space while preserving some property of interest [Cunningham and Ghahra-

mani, 2015; Golub and Van Loan, 2012]. Depending on the mapping, we divide dimension-

ality reduction methods into linear and nonlinear methods [Lee and Verleysen, 2007]. We

now review linear methods. Section 4.2.4 discusses nonlinear methods.

Linear dimensionality reduction: Consider n real-valued m-dimensional vectors X =

[~x1, . . . ,~xn]T ∈ Rn×m and a target dimensionality k <m. The goal is to produce low-
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dimensional vectors Zk = [~z1, . . . ,~zn]T ∈ Rn×k such that pairwise similarities, expressed as

inner products, in the low-dimensional space closely approximate pairwise similarities in

the high-dimensional space. Formally, the objective is to learn a linear transformation

P ∈ Rm×k and construct Zk =XP by optimizing the following problem:

argmin
Z∈Rn×k

||XXT −ZkZTk ||2F (4.1)

where ||A||F =
√∑n

i

∑n
i A

2
ij , for any square matrix A ∈Rn×n, denotes the Frobenius norm.

This is the problem that cornerstone methods such as Singular Value Decomposition (SVD)

[Golub and Van Loan, 2012], Principal Component Analysis (PCA) [Pearson, 1901; Hotelling,

1933], and Multidimensional Scaling (MDS) [Torgerson, 1952; Cox and Cox, 2000] solve op-

timally [Golub and Van Loan, 2012; Cunningham and Ghahramani, 2015]. SVD, PCA,

and MDS produce the same Zk, as we will see, but differ in the way they operate over

X. Specifically, SVD operates directly over X, PCA operates over the covariance matrix

C = XTX ∈ Rm×m, and MDS operates over the Gram matrix K = XXT ∈ Rn×n. To see

how SVD, PCA, and MDS relate to each other, we first express the SVD of X as follows:

X = UΣV T (4.2)

where U = [~u1, . . . ,~un] ∈ Rn×n is a column-orthonormal matrix such that ~ui, with i ∈ [1,n],

are the left singular vectors, V = [~v1, . . . ,~vm] ∈ Rm×m is a column-orthonormal matrix such

that ~vi, with i ∈ [1,m], are the right singular vectors, and Σ = diag(σ1, . . . ,σm) ∈ Rn×m is

a matrix containing the singular values in descending order along its diagonal (i.e., σ1 ≥

. . . ≥ σm), with zeroes everywhere else. A matrix V is column-orthonormal if its columns

are mutually orthogonal unit vectors (i.e., V TV = I, where I is the identity matrix). Then,

we express the eigendecomposition of any square matrix A as QΛQT ∈ Rd×d, where Q =

[~q1, . . . ,~qd] ∈ Rd×d is a column-orthonormal matrix with the eigenvectors of A and Λ =

diag(λ1, . . . ,λd) ∈ Rd×d is a matrix containing the eigenvalues of A in descending order

along its diagonal (i.e., λ1 ≥ . . . ≥ λd). Let C = QCΛCQCT and K = QKΛKQKT be the
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eigendecompositions of C and K, respectively. Given the SVD of X (Equation 4.2), the

following two relations hold:

C =XTX = V ΣUTUΣV T = V Σ2V T (4.3)

K =XXT = UΣV TV ΣUT = UΣ2UT (4.4)

Therefore, the eigenvectors of C are the same as the left singular vectors of X (i.e., QC = V ),

the eigenvectors of K are the same as the right singular vectors of X (i.e., QK = U),

and the eigenvalues of K and C are the squares of the singular values of X (i.e., ΛK =

ΛC = Σ2). Based on the above, MDS constructs ZMDS
m =QK

√
ΛK = UΣ, PCA constructs

ZPCAm =XQC =XV , and SVD constructs ZSV Dm =XV . From Equation 4.2, we know that

XV =UΣ and, therefore, ZMDS
m =UΣ =XV =ZPCAm =ZSV Dm . By retaining the first k <m

eigenvalues and eigenvectors, we obtain the following low-dimensional representation:

Zk = U1:n,1:kΣ1:k,1:k =XV1:m,1:k (4.5)

Despite producing identical representations, PCA and SVD require O(min{n ·m2 +m3,m ·

n2 +n3}) time, whereas MDS requires O(n2) time to constructK and O(n3) time to perform

the eigendecomposition on K. For linear dimensionality reduction, it is common to use PCA

or SVD due to their reduced computational cost. However, for nonlinear dimensionality

reduction, the construction of K is unavoidable and, therefore, MDS is the prevalent option

(see Section 4.2.4).

4.2.2 Time-Series Representation Methods

Due to the high dimensionality of time series, representation methods [Golub and Van Loan,

2012; Cunningham and Ghahramani, 2015; Percival and Walden, 2006; Jain, 1989; Oppen-

heim and Schafer, 2009] aim to reduce it to lower the storage and computational costs of

time-series analysis methods. Since the debut of the GEMINI framework [Agrawal et al.,

1993; Faloutsos et al., 1994], research on representation methods has focused on exploring
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trade-offs between low-dimensional representations, such as reconstructing quality, sensi-

tivity to noise, compactness, and computational cost. Depending on the transformation

applied to time series and on the output format, we divide representation methods into

data-agnostic and data-aware methods and into numeric and symbolic methods [Esling and

Agon, 2012]. In Section 2.4, we provided an in-depth discussion of the state of the art for

time-series representation methods that we will not repeat here for brevity.

Despite their optimality [Golub and Van Loan, 2012; Cunningham and Ghahramani,

2015], linear dimensionality reduction methods are prohibitively expensive (see Section

4.2.1). Therefore, approaches such as DFT, PAA, and SAX are used in practice. All

previously mentioned methods construct representations to preserve or lower bound ED.

Recent experimental evaluations of distance measures [Ding et al., 2008; Wang et al., 2013;

Bagnall et al., 2017] show that ED is inappropriate for most applications. Next, we review

alternative distance measures.

4.2.3 Invariances and Distance Measures

As we discussed in Sections 2.2 and 2.3, distance measures handle the majority of distortions

by preprocessing time series before comparison [Keogh and Kasetty, 2003; Keogh et al., 2004;

Argyros and Ermopoulos, 2003; Oppenheim and Schafer, 2009; Goldin and Kanellakis,

1995]. However, for many important distortions, preprocessing is not effective and, there-

fore, sophisticated distance measures offer invariances during comparison. For example, to

satisfy the shift invariance, our SBD distance measure (see Section 3.3.1) compares out-

of-phase time series, whereas DTW [Sakoe and Chiba, 1978] compares time series with

misaligned regions. Our extensive experimental evaluation in Sections 3.5 and 3.6 showed

that SBD and DTW achieve similar classification accuracy but with significant benefits for

SBD in terms of efficiency.
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4.2.4 Nonlinear Dimensionality Reduction

Linear dimensionality reduction methods fail to effectively model data with complex, nonlin-

ear structures, where kernel methods thrive [Cortes and Vapnik, 1995; Hofmann et al., 2008;

Schölkopf et al., 1997; Schölkopf et al., 1998; Schölkopf and Smola, 2002]. Specifically, ker-

nel methods use a function φ : Rm→H to implicitly map data into a Reproducing Kernel

Hilbert Space (RKHS), H, of high (and often infinite) dimension. Because explicit compu-

tation of coordinates in H is infeasible, kernel methods invoke the “kernel trick” [Aizerman

et al., 1964], which permits efficient interaction with data through pairwise comparisons,

k(~x,~y) = 〈φ(~x),φ(~y)〉H, or the corresponding distance metric, Dk(~x,~y) = k(~x,~x) +k(~y,~y)−

2k(~x,~y) [Schölkopf, 2001]. As a consequence, to perform dimensionality reduction in H,

where direct computation of SVD or PCA is infeasible, KPCA [Schölkopf et al., 1997;

Schölkopf et al., 1998] performs eigendecomposition over the Gram matrix K, where Kij =

k(~xi, ~xj) = φ(~xi)φ( ~xj)T . Therefore, KPCA is the nonlinear counterpart of MDS, discussed in

Section 4.2.1. Similarly to MDS, KPCA suffers from high space requirements. Specifically,

KPCA requires O(n2) storage, where n is the number of data instances. Furthermore, its

runtime is prohibitively expensive: it requires O(n2) time to construct K and O(n3) time

to perform an eigenvalue decomposition on K. In addition, KPCA requires to careful tune

kernel function parameters that affect the quality and compactness of the low-dimensional

representation. In Section 4.3.3, we propose a simple, yet effective, method to tune kernel

parameters. Next, we review approximations for kernel methods.

4.2.5 Approximations for Kernel Methods

To alleviate the burdens associated with the high memory and runtime costs of kernel

methods, the Nyström method [Nyström, 1930; Williams and Seeger, 2001; Drineas and

Mahoney, 2005] approximates the Gram matrix K using a set of landmark vectors, whereas

the Random Fourier Features (RFF) method [Rahimi and Recht, 2008] approximates K

through randomized feature maps.

The Nyströmmethod: The objective of Nyström is to approximate k(~xi, ·) =φ(~xi) ∀ i∈
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[1,n] as a linear combination of d landmark vectors G= [~g1, . . . ,~gd]T ∈Rd×m [Oglic and Gärt-

ner, 2017]:

argmin
a∈Rd×n

∑n

i=1
||K(~xi, ·)−

∑d

j=1
aj,iK(~gj , ·)||2H (4.6)

For each ~xi, this is a convex problem depending on a single column of a and, therefore, the

optimal solution is a = W−1ET , where W ∈Rd×d, with Wij = k(~gi,~gj)∀ i, j∈G, E∈Rn×d,

with Eij = k(~xi,~gj)∀ i∈X, j ∈G, and W−1 = QWΛ−1
W Q−1

W is the inverse of W . Nyström

constructs K̂ ≈K as follows:

K̂ = EW−1ET = (EQWΛ−0.5
W )(EQWΛ−0.5

W )T = ZdZ
T
d (4.7)

Despite the closed form solution for this problem, the selection of landmark points is a dif-

ficult combinatorial problem with a large body of work [Williams and Seeger, 2001; Drineas

and Mahoney, 2005; Zhang et al., 2008; Kumar et al., 2012; Gittens and Mahoney, 2013;

Li et al., 2016].

The Random Fourier Features method: Unlike Nyström, which implicitly lifts data

to H, RFF aims to explicitly approximate k(~x,~y). Specifically, RFF constructs randomized

feature maps F : Rm→ Rd such that the inner product of two transformed vectors approx-

imates their kernel function: 〈F (~x),F (~y)〉 ≈ k(~x,~y). Through that step, RFF converts X

into Zd and approximates K with K̂ = ZdZ
T
d . Despite the benefits of explicitly embedding

data in low-dimensional space, RFF requires the custom construction of feature maps for

any given kernel function [Maji and Berg, 2009; Avron et al., 2014; Hamid et al., 2014;

Kar and Karnick, 2012].

Nyström is a data-aware method computing landmark vectors from available data and

requires O(n ·d2) time to construct Zd, where n is the number of data instances and d is

the number of landmark vectors. In contrast, RFF is a data-agnostic method sampling

feature maps from a distribution independent from available data and requires O(n ·m ·d)

time to construct Zd, where n is the number of data instances, m is the length of each

data instance, and d is the number of landmark vectors. The benefits from representing
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K̂ = ZdZ
T
d in both methods are twofold: (i) significant memory savings as Zd requires only

O(n ·d) space, where n is the number of data instances and d is the number of landmark

vectors; and (ii) substantial computational savings during the learning process.

An in-depth evaluation of Nyström and RFF [Yang et al., 2012] shows impressive the-

oretical and empirical benefits for Nyström in comparison to RFF. Considering also the

difficulty to generalize RFF on arbitrary kernel functions, we rely on Nyström to efficiently

learn representations for time series.

4.2.6 Problem Definition

We address the problem of efficiently learning data-aware, low-dimensional representa-

tions that preserve the invariances offered by a given kernel function, k(~x,~y), for any ~x

and ~y in the original high-dimensional space. Considering that existing time-series rep-

resentation methods cannot natively preserve important invariances, such as shift and

warp (see Section 4.2.3), we focus on learning representations for time-series kernel func-

tions. Furthermore, the learned representations satisfy the following principles: (P1) pre-

serve similarities (i.e., 〈Zk(~x),Zk(~y)〉 ≈ k(~x,~y)); (P2) offer lower bounding measure (i.e.,

ED(Zk(~x),Zk(~y)) < Dk(~x,~y)); (P3) permit operations over Zr = [Zk(1), . . . ,Zk(r)], with

r < k; (P4) support efficient and memory tractable similarity computation of available and

new data; and (P5) support efficient and memory tractable eigendecomposition of Gram

matrix K. Now, we introduce GRAIL, our generic, data-aware, and scalable representation

learning framework.

4.3 The GRAIL Framework

Our objective is to simplify and unify the design of scalable time-series mining methods

by automatically constructing representations that natively preserve the invariances offered

by any chosen comparison method. This is fundamentally different from the time-series

literature where representation methods are agnostic to the similarity function used in sub-
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sequent learning processes [Esling and Agon, 2012]. To achieve this goal, we present GRAIL,

a generic framework for efficient representation learning given a user-specified kernel func-

tion. GRAIL representations satisfy five principles, namely, principles P1 through P5 in

Section 4.2.6, to seamlessly integrate with and accelerate existing kernel and time-series

mining methods. Considering that the most successful distance measures for time series

offer shift- or warp-invariances [Wang et al., 2013; Esling and Agon, 2012], we first de-

velop an efficient Warp-INvariant Kernel (WINK) function to compare time series (Section

4.3.1). Given a kernel function, GRAIL proceeds in three steps. First, GRAIL computes

a dictionary of landmark time series that effectively summarizes available data using the

k-Shape clustering algorithm of Chapter 3 (Section 4.3.2). Second, GRAIL estimates nec-

essary parameters such that both the variance of the data in the low-dimensional space and

the compactness of the learned representations are maximized (Section 4.3.3). Third, given

the landmark time series and the estimated parameters, GRAIL constructs data-aware rep-

resentations by expressing each time series as a linear combination of the landmark time

series (Section 4.3.4).

4.3.1 Warp-Invariant Kernel for Time Series

As discussed before, comparing time-series under shift- and warp-invariances is of criti-

cal importance for effective time-series analysis. GRAIL interacts with time series using

kernel functions that satisfy the positive semi-definiteness property [Cristianini and Shawe-

Taylor, 2000; Schölkopf and Smola, 2002], which we discuss next. Unfortunately, successful

methods for time-series comparison under these invariances, such as SBD and DTW (see

Section 4.2.3), cannot construct, based on their current formulation, proper kernel functions

[Wachman et al., 2009; Cuturi, 2011]. Importantly, state-of-the-art kernel functions for time

series, such as the Global Alignment (GA) kernel [Cuturi et al., 2007; Cuturi, 2011], scale

quadratically with the time-series length and, therefore, are prohibitively expensive to use

in practice. Our novel WINK function is intended to circumvent this efficiency limitation.

The positive semi-definiteness property of kernel functions (often referred to as Mercer’s



CHAPTER 4. EFFICIENT TIME-SERIES REPRESENTATION LEARNING 100

condition [Mercer, 1909]) constitutes a critical condition for the existence of RKSH (see

Section 4.2.4) and leads to convex solutions for many learning problems involving kernels

[Cortes and Vapnik, 1995; Bach and Jordan, 2005]. In simple terms, a symmetric function

k(·, ·) is a kernel if its Gram matrix K, formed by a finite set of data points, has non

negative eigenvalues. Unfortunately, for many functions it is challenging to show that they

satisfy Mercer’s condition. For example, it required multiple attempts to define a proper

DTW-like kernel function, such as GA [Shimodaira et al., 2002; Bahlmann et al., 2002;

Haasdonk and Bahlmann, 2004; Cuturi et al., 2007; Cuturi, 2011]. To design WINK, we

rely on Haussler’s convolution kernel [Haussler, 1999], a seminal framework for engineering

new positive semi-definite kernels [Shin and Kuboyama, 2008].

The central idea behind convolution kernels is to infer the similarity of two data objects

based on the similarity of their parts. Specifically, convolution kernels combine positive

semi-definite kernels (i.e., return the sum of the values of the kernels) computed on all pairs

of the components of the composite data objects. More formally, we assume that a time

series ~x∈X is composed of P parts xp ∈Xp. Let us also assume that a kernel k′ :Xp×Xp→R

exists and that a relation R(~x) denotes the possible ways in which we can transform ~x

into x1, . . . ,xP . Then, we can define a kernel k : X ×X → R as follows [Haussler, 1999;

Hofmann et al., 2008; Shin and Kuboyama, 2008]:

k(~x,~y) =
∑

(x′,~x)∈R(~x)

∑
(y′,~y)∈R(~y)

k′(x′,y′) (4.8)

Therefore, we need to define two relations, Rs(~x) and Rw(~x), to decompose time series in

such a way so that WINK can be shift- and warp-invariant. For Rs(~x), we follow [Wachman

et al., 2009] to construct a shift-invariant kernel. For Rw(~x), we rely on efficient resampling

to stretch time series [Smith, 2007].

Shift-invariant kernel: Rs(~x) needs to decompose time series ~x into all the shifted ver-

sions of ~x. By using a circular shift operator over ~x as our relation, we can rearrange the

coordinates of ~x= (x1, . . . ,xm) as follows: Rs(~x,S) = (x(1+S) modm, . . . ,x(m+S) modm). This
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Figure 4.2: Examples of NCC sequences produced by WINK.

process closely relates to how SBD (see Section 4.2.3) finds the shift that maximizes the in-

ner product between ~y and Rs(~x,S),∀S ∈ [1,m]. Instead of finding the best shift, [Wachman

et al., 2009] proposed to weight higher (lower) the inner products in shifted positions with

large (small) values by setting k′(~x,~y,γ) = expγ〈~x,~y〉, where γ ≥ 0, in Equation 4.8. Finally,

by using the same normalization and acceleration mechanism as with SBD, ks compares

time series in O(m · log(m)) time as follows:

ks(~x,~y,γ) =
∑

eγNCC(~x,~y) (4.9)

where NCC(~x,~y) = F−1{F(~x)∗F(~y)}
||~x||·||~y|| . This formulation might result in a Gram matrix with

off-diagonal values higher than values on the diagonal (i.e., a time series may be more similar

to another time series than to itself), which contradicts how methods often operate over

similarity matrices. Instead, we define our Shift-INvariant Kernel (SINK) as follows:

k′s(~x,~y,γ) = ks(~x,~y,γ)√
ks(~x,~x,γ) ·ks(~y,~y,γ)

(4.10)

The normalizations we introduced in Equations 4.9 and 4.10 are critical for the effectiveness

of SINK. Specifically, the normalization of the cross-correlation sequence in Equation 4.9

eliminates numerical issues that arise due to the exponentiation. Importantly, the normal-

ization in Equation 4.10 leads to statistically significant improvements in accuracy of SINK

in comparison to ks (see Sections 4.5 and 4.6).



CHAPTER 4. EFFICIENT TIME-SERIES REPRESENTATION LEARNING 102

Warp-invariant kernel: Rw(~x) needs to decompose time series ~x into all the warped

versions of ~x. In contrast to Rs(~x,S), where the number of all shifts to compute is small

(i.e., S ∈ [1,m]), for Rw(~x), there are exponentially many warping paths to consider (see

Section 4.2.3). To design a computationally tractable relation, we focus on a simpler form

of warping: stretching of time series. Specifically, we can generate new coordinates for time

series within a range of known coordinates through interpolation. Considering that Rs(~x,S)

already computes F(~x) and F(~y), we rely on a simple, yet effective, interpolation method

[Smith, 2007] that inserts zeros in the middle, mmid = dm+1
2 e, of the Fourier coordinates of

a time series. Specifically, if F(~x) = (X1, . . . ,Xm), we generate a time series of length m′

using Rw(~x,m′) =F−1(X(1:mmid),0(1:m′−m),X(mmid+1:m)) and define a warp-invariant kernel

kw based on SINK, as follows:

kw(~x,~y,γ) =
∑

(x′,~x)∈Rw(~x,·)

∑
(y′,~y)∈Rw(~y,·)

k′s(x′,y′,γ) (4.11)

This formulation of kw provides the flexibility to pose restrictions on the possible m′ values

in Rw(~y,m′) to consider (i.e., the number of different stretched versions of each time series).

To design a highly efficient warp-invariant kernel, we retain the original time series along

with its stretched version for a user-specified parameter m′, as follows:

k′w(~x,~y,γ,m′)=
∑

i,j∈{0,m′}
k′s(Rw(~x,i),Rw(~y,j),γ) (4.12)

Algorithm 8 shows how we can compute WINK in a few lines of code using modern

mathematical software. In Figure 4.2, we display an example of how WINK constructs

cross-correlation sequences (Figure 4.2b) for a time series T2 that requires stretching to

better match the shape of T1 before comparison (Figure 4.2a). To guarantee that WINK is

a symmetric function (i.e., k′w(~x,~y,γ,m′) = k′w(~y,~x,γ,m′)), we consider stretched versions

of both time series. We observe that the values of the cross-correlation sequence where only

T2 is stretched (dotted-and-dashed line) takes higher values than the version where only T1
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is stretched (dashed line) or the version where none of the time series are stretched (solid

line). In particular, for low values of γ (e.g., 1 or 2), all three cross-correlation sequences

contribute similarly to the final kernel value of WINK, whereas for high values of γ (e.g., 10

or 20), one cross-correlation sequence dominates the other two and, therefore, contributes

more than the other two to the final kernel value. We now turn to the critical problem of

computing a dictionary of landmark time series.

4.3.2 Time-Series Dictionary Learning

Given a kernel function, the first step of GRAIL is to compute a dictionary of landmark

time series that Nyström requires in order to express time series as a linear combina-

tion of landmark time series (see Section 4.2.5). Unfortunately, the selection of land-

mark time series is a difficult combinatorial problem with significant impact on the quality

and compactness of the learned representations. Due to this difficulty, a large body of

work focuses on empirical and theoretical analysis of sampling and projection methods for

Nyström [Williams and Seeger, 2001; Drineas and Mahoney, 2005; Kumar et al., 2012;

Gittens and Mahoney, 2013]. The most popular sampling method for Nyström is uniform

sampling without replacement (i.e., random sampling) [Williams and Seeger, 2001]. Interest-

ingly, random sampling produces effective representations with minimal time and space over-

head in comparison to more expensive sampling and projection methods [Kumar et al., 2012;

Gittens and Mahoney, 2013]. Importantly, random sampling operates independently of the

kernel function of choice and, therefore, is an appealing method to construct landmark time

series.

However, as noted earlier, the careful selection of landmark time series reduces the

approximation error for Nyström and leads to more compact representations. Therefore,

for GRAIL, we explore the value of using the centroids of time-series clustering methods

to construct landmark time series. Recent empirical and theoretical analysis shows that

the approximation error for Nyström is bounded by the quantization error of mapping each
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Algorithm 8: Warp-Invariant Kernel
Input : ~x is a 1-by-m z-normalized time series

~y is a 1-by-m z-normalized time series
γ is a scaling parameter
m′ denotes percentage of stretching for ~x and ~y

Output: Sim is the kernel value between ~x and ~x
function Sim = WINK(~x,~y,γ,m′):

cc=WNCC(~x,~y,m′) ;
Sim= 2 ·sum(exp(γ · cc(1, :))) ;
for i ← 2 to size(cc,1 ) do

Sim= Sim+sum(exp(γ · cc(i, :))) ;

def cc = WNCC(~x,~y,m′):
Lenx′ = ceil(len(~x) · 100+m′

100 ) ;
FFTL= 2nextpower2(2∗Lenx′−1) ;
X = FFT (~x,FFTL) ;
Y = FFT (~y,FFTL) ;
cc=NCC(X,~x,~y,FFTL) ;
if m′ ≥ 0 then

cc2 =NCC(X,~x,Interp(Y,Lenx′),FFTL) ;
cc3 =NCC(X,~y,Interp(X,Lenx′),FFTL) ;
cc= [cc,cc2, cc3] ;

def cc = NCC(X,~x,~y,FFTL):
cc= IFFT (X ∗FFT (~y,FFTL)) ;
cc= cc

norm(~x)·norm(~y) ;

def x’ = Interp(X,m′):
k = ceil( len(X)+1

2 ;
X ′ = [X(1 : k),zeros(1,m′− len(X)),X(k+ 1 : len(X))] ;
x′ = real(IFFT (X ′)) · m′

len(X) ;

vector ~xi ∈X to the closest d landmark vectors ~gi ∈G [Zhang et al., 2008]:

||K−EW−1ET ||F ≤
∑n

i=1
||~xi−gmap(i)||2 (4.13)

where map(i) = argmin j=1,...,d ||~xi−~gj ||2. Clustering methods relying on the principles of

k-means [MacQueen, 1967] minimize the exact same quantization error and, therefore, the

cluster centroids can serve as landmark vectors for Nyström. Unfortunately, k-means is

not suitable to cluster time series as it cannot compare time series under shift- or warp-
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invariance. Instead, k-Shape efficiently clusters time series under shift-invariance and the

cluster centroids effectively summarize time series for distance measures offering shift and

warp invariances, as we saw in Chapter 3. Therefore, for GRAIL, we use the cluster centroids

of k-Shape as landmark time series. Our extensive evaluation (see Sections 4.5 and 4.6)

corroborates earlier findings on the effectiveness of random sampling [Kumar et al., 2012;

Gittens and Mahoney, 2013] but, importantly, shows that k-Shape significantly outperforms

all state-of-the-art methods for selecting landmark vectors.

Next, we discuss how we can rely on the landmark time series to estimate necessary

parameters for GRAIL.

4.3.3 Parameter Tuning

After the construction of landmark time series, GRAIL proceeds with the estimation of

kernel function parameters, which affect (i) the compactness and (ii) the quality of the

learned representations. To illustrate this point, Figure 4.3 explores how different γ values

of WINK, given a fixed m′ value, affect those two factors for the StarLightCurve dataset

[Keogh et al., 2015]. Specifically, Figure 4.3a measures the cumulative variance explained in

varying representation sizes for different γ values. Figure 4.3b presents the 1NN classifica-

tion accuracies of representations capturing 90% of the variance in time series for different

γ values. We observe that small γ values require only a few eigenvectors to explain 90% of

the variation in the similarities of time series, whereas large γ values require significantly

more eigenvectors (i.e., small γ values lead to more compact representations). On the other

hand, when all representations explain the same targeted amount of variance in data, dif-

ferent γ values lead to significant differences in the quality of the representations for various

tasks, such as for classification in Figure 4.3b. Therefore, selecting small γ values due to

the storage and computation benefits might lead to significant reductions in accuracy. Due

to this difficulty in tuning kernel function parameters, the majority of the literature relies

on supervised tuning of such parameters, which is not realistic for the unsupervised setting

we consider in this work.
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Figure 4.3: Comparison of the compactness and the classification accuracy of learned rep-
resentations with different γ values for WINK for the StarLightCurve dataset.

For GRAIL, we propose a simple, yet effective, method to estimate the bandwidth γ of

WINK that relies on two key observations. First, considering that some loss of information

is unavoidable in the low-dimensional space, time-series similarities with large variance are

much more likely to be preserved in the low-dimensional space than time-series similarities

with low variance. Therefore, we want to select γ values such that the variance is maximized.

Second, to determine how effectively we can capture the variance in the low-dimensional

space, we need to consider how much of the variance each eigenvalue explains. Therefore,

we want to select γ values such that for a small number of r eigenvalues, such as r= 10, the

variance explained is maximized. Our method combines those two observations in a scoring

function to permit effective selection for γ given an m′ value. Specifically, considering the

eigendecomposition of matrix W = QWΛWQTW , where W consists of the pairwise kernel
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Algorithm 9: Parameter Tuning
Input : G is a d-by-m matrix containing d landmark sequences

GV is a 1-by-l vector containing l values for γ
m′ denotes percentage of stretching

Output: score is the score of selected γ
gamma is the selected kernel scaling parameter

function [score, gamma] = GammaSel(G,GV,m′):
foreach γ ∈GV do

Wtmp= [];
for i= 1 to d do

for j = 1 to d do
W (i, j) =WINK(G(i, :),G(j, :),γ,m′);

Wtmp= [Wtmp,W (i, :)];
GV ar(γ) = var(Wtmp);
[Q,L] = eig(W );
V arTop10(g) = sum(L(1:10))

sum(L) ;

[score,gamma] =max(GV ar ·V arTop10);

values of the landmark time series (see Section 4.3.2), we compute the scoring function of

each γ value as follows:

Score(γ,m′) = var(W,γ,m′) ·
∑r
i=1 ΛW (i)∑d
i=1 ΛW (i)

(4.14)

where var(W,γ,m′) denotes the variance of the kernel values in W computed with WINK

using γ and m′. Algorithm 9 shows how we can tune parameters for WINK according to

our scoring function (Equation 4.14). In our extensive evaluation (Sections 4.5 and 4.6),

we show that our lightweight method for parameter tuning leads to representations with

similar compactness and accuracy to representations tuned in a supervised manner. In the

next section, we show how GRAIL learns time-series representations.

4.3.4 Time-Series Representation Learning

We now present GRAIL, our generic representation learning framework. Prior to learning

any representations, GRAIL chooses (i) a kernel function for time-series comparison, such

as WINK (Section 4.3.1); (ii) a method for constructing landmark time series, such as ran-
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dom selection of landmark time series from available data or through the use of time-series

clustering (Section 4.3.2); and (iii) a method to estimate necessary parameters, such as our

method for parameter tuning for kernel functions (Section 4.3.3). Then, GRAIL proceeds in

two steps: (i) constructs a temporal representation, Zd, where d is the number of landmark

time series, to approximate the Gram matrix K̂ =ZdZ
>
d using the Nyström method (Section

4.2.5); and (ii) exploits a matrix sketching algorithm over Zd, namely, the Frequent Direc-

tions (FD) method [Liberty, 2013], to efficiently approximate the eigendecomposition of K̂

and learn the final representation Zk, where k≤ d, which satisfies principles P1 through P5

in Section 4.2.6.

Approximation of K̂: As noted earlier, Nyström requires as input two matrices: (i) ma-

trix W ∈Rd×d, which contains all pairwise similarities between landmark time series; and

(ii) matrix E ∈Rn×d, which contains pairwise similarities between the n time series and

the d landmark time series. Once we construct those two matrices, Nyström computes the

inverse of W−1 =QWΛ−1
W Q−1

W and constructs Zd as follows:

Zd = EQWΛ−0.5
W (4.15)

The dimensionality d of Zd corresponds to the number of landmark time series extracted

from the entire dataset and, therefore, d is significantly smaller than the size n of the entire

dataset. Unfortunately, for very large datasets, Nyström might require to use thousands of

landmark time series to accurately approximate K. In such cases, the dimensionality of the

learned representation might surpass the dimensionality of the original time series, which

defeats the original purpose of producing low-dimensional representations.

Representation Learning: To eliminate this issue, we propose to use FD to approximate

the eigendecomposition of K using Zd and, subsequently, reduce the dimensionality from d to

k by retaining only the top eigenvalues and eigenvectors of K. An alternative approach is to

directly exploit the eigendecomposition of matrix W , which Nyström computes to construct

Zd, to approximate the eigendecomposition of K. Unfortunately, this approach offers a
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poor approximation of the eigendecomposition of K. Importantly, it may lead to non-

orthogonalized eigenvectors ofK, as required by definition (see Section 4.2.1), which impacts

the effectiveness of learned representations. Therefore, assuming the eigendecomposition of

K =QΛQT , we can approximate Q̂=ZdQCΛ−0.5
C inO(nd2), whereQC∈Rd×d and ΛC∈Rd×d

are the eigenvectors and eigenvalues of C = ZTd Zd∈Rd×d. Unfortunately, for large number

d of landmark time series, such computation becomes prohibitively expensive. We rely on

FD to approximate matrix C by retaining only a sketch of size b of Zd in O(ndb), where

b ≤ d ≤ n, and we construct Zk = Q̂1:n,1:kΛC1:k,1:k. This procedure leads to a number of

benefits: (i) guarantees that Q remains orthonormal and, therefore, permits lower bounding

of the original kernel function (P2); (ii) permits the estimation of the variance explained in

each coordinate of Zk and, therefore, we can reuse part of the coordinates of Zk (P3); and

(iii) enables efficient approximation of the eigenvalues and eigenvectors of K and, therefore,

seamless integration with existing algorithms relying on such cornerstone operation.

Algorithm 10 shows how to learn representations using GRAIL with just a few lines

of code using modern mathematical software. GRAIL expects as input the time-series

collection, the number of landmark time series to construct, two vectors with values for

γ and m′ to perform a grid search and estimate suitable parameters for WINK, and the

fraction of the variance to explain in low-dimensional space in order to determine the final

dimensionality of Zk. Alternatively, the algorithm can be easily modified to get a user-

specified value for the dimensionality of Zk.

Next, we review how GRAIL representations integrate with and, therefore, accelerate

existing kernel methods.

4.4 Time-Series Mining with GRAIL

In this section, we describe how to use GRAIL representations to perform major time-series

mining tasks. Specifically, we focus on five tasks, namely, querying and indexing, classifica-

tion, clustering, sampling, and visualization.
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Algorithm 10: Representation Learning with GRAIL
Input : X is an n-by-m matrix containing n time series

k is the number of landmark time series to extract
f is a scalar used to estimate the dimensionality dim of Zk
GV is a 1-by-l vector containing l values for γ
R is a 1-by-p vector containing p values for m′

Output: Zk is an n-by-dim matrix
function Zk =GRAIL(X, k, GV, R, f):

D = k−Shape(X,k);
for i= 1 to p do

[gscore(i),gvalue(i)] =GammaSel(D,GV,i);
[maxscore,pos] =max(gscore) ;
BG= gvalue(pos) ;
BW = pos ;
for i= 1 to k do

for j = 1 to k do
W (i, j) =WINK(D(i, :),D(j, :),BG,BW ) ;

for i= 1 to n do
for j = 1 to k do

E(i, j) =WINK(X(i, :),D(j, :),BG,BW ) ;

[Q,L] = eig(W ) ;
Zd = E ∗Q∗L−0.5;
b= 0.5∗d;
B = zeros(b,d);
for i= 1 to n do

B = [B;Zd(i, :)];
if B has no zero valued rows then

[U,S,V ] = SV D(B) B = sqrt(max(0,S2−S2
b
2 ,
b
2
∗ Ib))∗V T ;

[Q,L] = EIG(BT ∗B);
U = Zd ∗Q∗L−0.5;
dim= find( cumsum(L)

sum(L) > f);
Zk = U(:,1 : dim)∗L(1 : dim,1 : dim)−0.5;
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Querying and Indexing: GRAIL representations satisfy two important properties, namely,

P1 and P2, to facilitate natively querying and indexing of time series. In particular, GRAIL

constructs Zk such that in low-dimensional metric space it preserves the similarities of time

series in the original high dimensional space (i.e., 〈Zk(~x),Zk(~y)〉 ≈WINK(~x,~y)) and, im-

portantly, permits to use ED in the low-dimensional space as a lower bounding measure

of Dk(~x,~y) =WINK(~x,~x)+WINK(~y,~y)−2WINK(~x,~y) in the original high-dimensional

space (i.e., ED(Zk(~x),Zk(~y)) < Dk(~x,~y)). Therefore, GRAIL representations can exploit

the GEMINI framework and existing indexing mechanisms [Esling and Agon, 2012] to or-

ganize and efficiently retrieve time series given a time-series query.

Classification: GRAIL representations approximate the Gram matrix K as K = ZkZ
T
k ,

which enables the use of the Woodbury formula [Williams and Seeger, 2001] to invert K

efficiently as follows:

(K−σI)−1 = 1
σ

(I−Zk(σ · I+ZTk Zk)−1ZTk ) (4.16)

where σ ≥ 0 is a regularization parameter and I is the identity matrix. Many algorithms

rely on the this expensive operation, including the least-squares Support Vector Machines

(SVM) [Suykens et al., 1999] classification algorithm. With the Woodbury formula we can

significantly reduce the cost to invert K from O(n3) to O(nk2), a substantial reduction.

Importantly, as Zk is embedded in a low-dimensional metric space, we can consider Zk as

a matrix containing feature vectors in its rows. Such interpretation enables the use of any

existing linear method for classification, such as logistic regression and linear SVM [Fan

et al., 2008].

Clustering: In the process of producing Zk, GRAIL also approximates the eigenvalues and

eigenvectors of matrix K. Many algorithms rely on the eigendecomposition of K, including

the seminal spectral clustering algorithm [Ng et al., 2002]. Therefore, we can easily exploit

the approximation of Q produced by GRAIL and provide it as input to vanilla k-means

algorithm, which results in a very efficient computation of spectral clustering without ever
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having to construct the Gram matrix K.

Sampling: A similar methodology applies to sampling. Determinantal Point Processes

(DPP) [Kulesza and Taskar, 2010; Affandi et al., 2013] are appealing models to select a

subset of time series from a dataset when diversity is desired. Specifically, a DPP defines a

distribution over subsets of time series of a base set of all the time series in the dataset and

randomly selects a subset, which is likely to contain dissimilar time series. The dissimilarity

between time series is measured by the Gram matrix K. Once K is given, DPP computes

the eigenvalues and eigenvectors of K. A dual representation for DPP was proposed in

[Kulesza and Taskar, 2010], which enables the use of representations such as Zk that satisfies

K = ZkZ
T
k . Therefore, as in the case of spectral clustering, we exploit the approximation

of Q produced by GRAIL and provide it as input to the dual DPP formulation of the

problem.

Visualization: Last, we explore the use of methods to visualize datasets. The most

prominent such method in the literature is the KPCA algorithm that the GRAIL framework

relies on. Therefore, by using GRAIL-FD we can get for free the approximation of Q and

visualize the projection of data in the top two eigenvectors of Q to explore the structure of

time-series datasets.

We now turn to the experimental evaluation of the factors determining the effectiveness

of GRAIL and on the aforementioned time-series mining tasks.

4.5 Experimental Settings

In this section, we review in detail the settings for the evaluation of (i) our kernel function,

WINK; (ii) k-Shape as a dictionary learning algorithm; (iii) our parameter selection ap-

proach; (iv) GRAIL representations; and (v) five time-series mining methods that exploit

GRAIL representations.

Datasets: As in Chapter 3, we use the largest public collection of class-labeled time-series

datasets, namely, the UCR collection [Keogh et al., 2015]. It consists of 85 datasets, both
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synthetic and real, which span several different domains. (Appendix C provides the exact

names of the 85 datasets used in our analysis along with some relevant characteristics.)

Each dataset contains from 40 to 16,637 sequences. The sequences in each dataset have

equal length, but from one dataset to another the sequence length varies from 24 to 2,709.

These datasets are annotated and every sequence can belong to only one class. In the con-

text of clustering, and for the sake of convenience, the class label for a sequence is often

interpreted as identifying the cluster where the sequence belongs. Furthermore, the datasets

are already z-normalized and split into training and test sets. As we will see, we use this

split of the datasets to evaluate classification algorithms.

Platform: We ran our experiments on a cluster of 302 servers with an identical configura-

tion: Dual Intel Xeon E5-2650v4 (12-core with 2-way SMT) processor with clock speed at

2.2 GHz and up to 256 GB RAM. Each server runs Red Hat Enterprise Linux 6.6 (64-bit)

and Matlab R2014a (64-bit).

Implementation: We implemented all approaches under the same framework, in Matlab,

for a consistent evaluation in terms of both accuracy and efficiency. For repeatability pur-

poses, we make all datasets and source code available.1

Baselines: We evaluate WINK, our kernel function; our k-Shape clustering method as

a dictionary learning algorithm; our parameter tuning method (GRAIL-PT); our GRAIL

representations (GRAIL+Rep); our GRAIL-LB method to lower boundWINK; our GRAIL-

SVM linear classification method; our GRAIL-SC spectral clustering algorithm; our GRAIL-

DPP sampling method; and our GRAIL-KPCA visualization method.

Specifically, we compare WINK against the strongest state-of-the-art distance measures

(see Section 2.3) and kernel functions for time series:

• ED: a simple, efficient — yet accurate — distance measure [Faloutsos et al., 1994]

• SBD: our efficient and parameter-free distance measure developed in Chapter 3

• cDTW: the constrained version of DTW, with improved accuracy and efficiency

1http://www.cs.columbia.edu/~jopa/grail.html

http://www.cs.columbia.edu/~jopa/grail.html
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[Sakoe and Chiba, 1978]

• GA: a warp-invariant global alignment kernel [Cuturi, 2011]

Following [Ding et al., 2008; Wang et al., 2013], we use the 1NN classifier, which is a

simple and parameter-free classifier, to evaluate distance measures. Importantly, 1NN clas-

sifiers, combined with elastic distance measures, such as cDTW, achieve state-of-the-art

classification performance [Xi et al., 2006; Wang et al., 2013; Bagnall et al., 2017]. For

kernel functions, we use the Support Vector Machines (SVM) classifier [Cortes and Vapnik,

1995] as implemented by [Chang and Lin, 2011] to evaluate WINK (SVM+WINK) and

GA (SVM+GA) kernels. Additionally, we compare these approaches to the recently pro-

posed Ensemble Elastic (EE) classifier that combines 11 1NN classifiers using several elastic

distance measures [Lines and Bagnall, 2015].

We compare k-Shape against state-of-the-art sampling and projection methods devel-

oped or used to compute landmark vectors for Nyström. Specifically, we consider the

following sampling methods:

• Random: a simple and efficient uniform sampling method [Williams and Seeger,

2001]

• AFKMC2: an approximate version of the k-means++ sampling method [Bachem

et al., 2016]

• GibbsDPP: an approximate version of the DPP method that relies on Gibbs sam-

pling [Li et al., 2016]

• LevScore: a non-uniform sampling method based on leverage scores [Gittens and

Mahoney, 2013]

In addition to the sampling methods, we consider two projection methods: (i) a projection

method to sketch Gram matrix K based on the Fourier transform (SRFT) [Gittens and

Mahoney, 2013]; and (ii) a projection method to sketch Gram matrix K based on a Gaussian

Process method (GP) [Gittens and Mahoney, 2013].
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We evaluate GRAIL-PT, our parameter tuning method, along with three other ap-

proaches for kernel function parameter estimation:

• MinVariance: a simple method to always select kernel function parameters such

that the variance in data is minimized

• MaxVariance: a simple method to always select kernel function parameters such

that the variance in data is maximized

• LOOCAcc: a supervised method to always select kernel function parameters such

that the leave-one-out classification accuracy is maximized

We compare GRAIL+Rep, our learned representations, against representation methods

learned using the exact KPCA method (KPCA+Rep), the optimal representation learning

method for kernel functions. In both approaches, Rep denotes the learned representation.

For example GRAIL+Z95per denotes the compact GRAIL representation, Zk, that explains

95% of the variance in Zd, the GRAIL representation constructed using d landmark time se-

ries. Similarly, KPCA+Z95per denotes the representation that explains 95% of the variance

in time series.

To understand the performance of GRAIL representations in practice, we evaluate

learned representations, when combined with suitable kernel methods (see Section 4.4),

in five major time-series mining tasks, namely, querying and indexing, classification, clus-

tering, sampling, and visualization. Specifically, for querying and indexing, we compare

GRAIL-LB, our lower bounding method for WINK, against three state-of-the-art lower

bounding methods for ED and cDTW distance measures:

• DFT-LB: a method that uses the Fourier transform to represent time series and uses

the first-k fourier coefficients to lower bound ED [Faloutsos et al., 1994]

• Keogh-LB: a lower bounding method for cDTW [Keogh and Ratanamahatana, 2005]

[Sakoe and Chiba, 1978]
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GRAIL-LB and DFT-LB operate over low-dimensional representations, whereas Keogh-LB

operates over the original raw time-series representation.

For classification, we evaluate GRAIL-SVM, our classifier that exploits linear SVM,

against the classifiers we considered above to evaluate WINK. Specifically, we compare

GRAIL-SVM against the three 1NN classifiers with ED, SBD, and cDTW distance mea-

sures, and the two SVM classifiers with WINK and GA kernels.

For clustering, we compare SC-GRAIL, our spectral clustering method, against the two

strongest clustering methods determined through our extensive experimental evaluation in

Chapter 3:

• k-AVG+ED: the original, highly efficient, but less-accurate, k-means clustering

method [MacQueen, 1967]

• k-Shape: our efficient and highly accurate time-series clustering method (see Chap-

ter 3)

For sampling, we compare GRAIL-DPP, our DPP-based sampling method, against two

state-of-the-art methods for approximate sampling using the k-means++ mechanism and

the DPP method:

• AFKMC2: an approximate version of the k-means++ sampling method [Bachem

et al., 2016]

• GibbsDPP: an approximate version of the DPP method that relies on Gibbs sam-

pling [Li et al., 2016]

Finally, for visualization, we compare GRAIL-KPCA, our approximate KPCA-based

visualization method, against the exact representations produced by KPCA over the Gram

matrix K.

Parameter settings: Among the distance measures discussed above, cDTW requires set-

ting a parameter to constrain its warping window. We compute the optimal window by per-

forming a leave-one-out classification step over the training set of each dataset (cDTWopt).
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To evaluate WINK and GA kernels using SVM, we need to set a regularization parame-

ter C. We tune the C value in the training set of each dataset using a grid search with

power of two C values ranging from −10 to 20 with step 1. For both kernels, we consider

scaling parameters ranging from 1 to 20. WINK also requires the tuning of the stretching

parameter for time series. We consider values ranging from 0% to 10% of the length of

the time series. For dictionary learning, all methods select or construct the same number

of landmark time series for each dataset, which corresponds to 40% of the number of time

series in each dataset. For parameter estimation, we evaluate all methods by learning repre-

sentations using the exact KPCA to avoid any effects from the dictionary learning process.

As before, we consider scaling parameters for WINK ranging from 1 to 20 and stretching

parameters ranging from 0% to 10% of the length of the time series. For the evaluation of

the learned representations, we extract landmark time series using k-Shape and GRAIL-PT

to estimate parameters for WINK.

Once we evaluate the components and the learned representations of GRAIL, we focus

on the evaluation of the learned representations when combined with suitable kernel meth-

ods to solve time-series mining tasks. Specifically, for querying and indexing, GRAIL-LB

and DFT-LB operate over low-dimensional representations with a fixed number of coordi-

nates, namely, 20 coordinates, across each dataset. Keogh-LB operates over raw time-series

using cDTW5, the cDTW with window 5% of the length of the time series of each dataset.

For classification, we set the regularization parameter C of GRAIL-SVM using the same

values for grid search as before and exploit GRAIL representations constructed using d

landmark time series. For clustering, sampling, and visualization we use compact GRAIL

representations, Zk, that explain 90% of the variance in Zd, the GRAIL representation con-

structed using d landmark time series. For clustering and sampling, we use the number of

classes in each dataset as the number of clusters and the number of samples for the dataset,

respectively.

Metrics: We compare our approaches on runtime and accuracy. For runtime, we compute

CPU time utilization and measure the time ratios for our comparisons for each dataset.
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To evaluate classifiers, we report the classification accuracy (i.e., number of correctly clas-

sified instances over all instances) by performing classification over the training and test

sets of each dataset. To evaluate representations we report the approximation error using

the Frobenius norm between the original kernel matrix K and the approximated kernel

K̂ = ZZT . To visualize our results over the 85 datasets, we employ a min-max normal-

ization to the approximation error to bound it between 0 and 1, and report 1 minus the

approximation error, as an accuracy value, to follow the convention of reporting accuracy

results throughout this thesis. We use the Rand Index [Rand, 1971] to evaluate clustering

accuracy over the fused training and test sets of each dataset. For the clustering and sam-

pling methods considered in this chapter, we report the average Rand Index over 10 runs;

in every run we use a different random initialization.

Statistical analysis: Following [Batista et al., 2014; Giusti and Batista, 2013], we ana-

lyze the results of every pairwise comparison of algorithms over multiple datasets using the

Wilcoxon test [Wilcoxon, 1945] with a 99% confidence level. According to [Demšar, 2006],

the Wilcoxon test is less affected by outliers than is the t-test [Rice, 2006], as Wilcoxon does

not consider absolute commensurability of differences. Moreover, using pairwise tests to rea-

son about multiple algorithms is not fully satisfactory because sometimes the null hypotheses

are rejected due to random chance. Therefore, we also use the Friedman test [Friedman,

1937] followed by the post-hoc Nemenyi test [Nemenyi, 1963] for comparison of multiple

algorithms over multiple datasets, as suggested in [Demšar, 2006]. The Friedman and

Nemenyi tests require more evidence to detect statistical significance than the Wilcoxon

test [Giusti and Batista, 2013] (i.e., the larger the number of methods, the larger the num-

ber of datasets required) and, hence, as we already use all 85 datasets for the Wilcoxon

test, we report statistical significant results with a 95% confidence level.
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Figure 4.4: Comparison of SVM+WINK and SVM+GA classifiers over 85 datasets.
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Figure 4.5: Ranking of classifiers based on the average of their ranks across datasets.

4.6 Experimental Results

In this section, we report our experimental results. Firstly, we evaluate WINK against state-

of-the-art distance measures and kernel functions (Section 4.6.1). Secondly, we compare k-

Shape against other dictionary learning methods (Section 4.6.2). Thirdly, we evaluate our

parameter tuning method (Section 4.6.3) and our representations (Section 4.6.4). Then, we

evaluate GRAIL representations on five tasks: (i) querying and indexing (Section 4.6.5); (ii)

classification (Section 4.6.6); (iii) clustering (Section 4.6.7); (iv) sampling (Section 4.6.8);

and (v) visualization (Section 4.6.9). Finally, we highlight our findings (Section 4.6.10).

4.6.1 Evaluation of WINK Against Other Distance Measures

We evaluate WINK, our time-series kernel function discussed in Section 4.3.1, in terms of

runtime and accuracy in comparison to other state-of-the-art time-series distance measures

and kernel functions.

Comparison against GA: To understand if WINK is a competitive kernel function for
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time series comparison, we first evaluate it against GA, the state-of-the-art kernel function

for time series, using the classification accuracy across 85 datasets (Section 3.5). Specifi-

cally, we compare the classification accuracy of SVM classifiers combined with the WINK

and GA kernels. Figure 4.4a presents the pairwise differences in accuracy between WINK

and GA where each circle represents a dataset. The first coordinate of each circle corre-

sponds to the classification accuracy of SVM+WINK and the second coordinate of each

circle corresponds to the classification accuracy of SVM+GA. SVM+WINK outperforms

SVM+GA in 62 of 85 datasets (i.e., 62 circles are above the diagonal in Figure 4.4a) and

the Wilcoxon test suggests this difference in accuracy is statistically significant.

Comparison against ED, SBD, and cDTW: Having shown that SVM+WINK sig-

nificantly outperforms SVM+GA, we now evaluate SVM+WINK against state-of-the-art

distance measures combined with the 1NN classifier. Specifically, SVM+WINK performs

at least as well as 1NN+ED, 1NN+SBD, and 1NN+cDTWOpt in 77, 75, and 65 datasets,

respectively, and the Wilcoxon test suggests these differences in accuracy are statistically

significant. In contrast, SVM+GA performs at least as well as 1NN+ED, 1NN+SBD, and

1NN+cDTWOpt in 55, 45, and 42 datasets, respectively, but the Wilcoxon test suggests

that only the difference in accuracy against 1NN+ED is statistically significant. Therefore,

SVM+WINK is the only classifier that significantly outperforms 1NN and SVM classifiers

combined with state-of-the-art distance measures. Interestingly, SVM+WINK performs at

least as well as EE, an ensemble classifier that combines 11 elastic distance measures, in 43

out of 85 datasets but with no statistical significance over EE.

Statistical analysis: To better understand the performance of SVM+WINK in compar-

ison with the other classifiers, we evaluate the significance of their differences in accuracy

when considered all together. Figure 4.5 shows the average rank across datasets for each

classifier. SVM+WINK is the top classifier meaning that SVM+WINK performed best in

the majority of the datasets. The Friedman test rejects the null hypothesis that all classifiers

behave similarly and, therefore, we proceed with a post hoc Nemenyi test to evaluate the

significance of the differences in the ranks. We observe two clusters of methods whose ranks
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Figure 4.6: Comparison of dictionary learning algorithms.

do not present a statistically significant difference: SVM+WINK and EE form the first

cluster, while 1NN+SBD, 1NN+cDTWOpt, and SVM+GA form the second cluster. The

methods in the first cluster are significantly better than the methods in the second cluster

and, in turn, the methods in the second cluster are significantly better than 1NN+ED.

Efficiency: WINK is the only comparison method that, when combined with SVM clas-

sifiers, significantly outperforms all standalone comparison methods combined with either

SVM or 1NN classifiers. We now investigate whether this superiority in accuracy has an

associated penalty in efficiency. Figure 4.4b shows how much slower GA is than WINK for

each dataset. We observe that WINK is significantly faster than GA across all datasets

with the differences ranging between one order of magnitude for medium-sized datasets to

three orders of magnitude for datasets with very long time series. We observe similar trends

against DTW variants because DTW and GA show comparable runtime performance and,

therefore, we omit the results. However, SBD is two to four times faster than WINK.

4.6.2 Evaluation of k-Shape Against Other Dictionary Learning Methods

Having shown the robustness of WINK, we now evaluate the performance of k-Shape as a

dictionary learning algorithm against sampling and projection methods.

Comparison against sampling methods: First, we evaluate k-Shape again Random,

the simplest, yet effective, method to sample time series. Figure 4.6a compares the two
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Figure 4.7: Ranking of dictionary learning algorithms based on the average of their ranks
across datasets.

methods using their approximation error (transformed into accuracy as discussed in Sec-

tion 4.5). k-Shape outperforms Random in 78 out of 85 datasets and the Wilcoxon test

suggests that this difference in accuracy is statistically significant. Similarly, k-Shape out-

performs the AFKMC2, GibbsDPP, and LevScore sampling methods in 82, 80, and 82

datasets, respectively. For all three pairwise comparisons the Wilcoxon test suggests that

the differences in accuracy are statistically significant. To ensure that the remarkable per-

formance of k-Shape is not an artifact of choosing k landmark time series as the number of

classes per datasets, we perform an additional experiment where we vary the number of k

landmark time series from 10 to 100. Figure 4.6b presents the approximation error (trans-

formed into accuracy as discussed in Section 4.5) on a randomly chosen dataset, namely,

the StarLightCurve dataset. We observe that k-Shape outperforms all sampling methods

across all different values of k and that Wilcoxon suggests that all differences in accuracy

are statistically significant. Importantly, we observe similar behaviors across all datasets.

Comparison against projection methods: Having shown the superiority of k-Shape

against sampling methods, we now evaluate the performance of k-Shape again two projec-

tion methods. k-Shape outperforms SRFT and GP in 75 and 74 datasets, respectively, and

all differences in accuracy are statistically significant according to Wilcoxon. As before,

Figure 4.6b compares k-Shape against SRFT and GP for different values of k. k-Shape

significantly outperforms both methods across all different values of k and datasets.

Statistical analysis: To verify the superiority of k-Shape against the other methods, we

evaluate the significance of their differences in accuracy when considered all together. Fig-

ure 4.7 shows the average rank across datasets for each method. k-Shape is the top method,

meaning that k-Shape performed best in the majority of the datasets. The Friedman test
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Figure 4.8: Ranking of parameter tuning methods based on the average of their ranks, using
accuracy as measure, across datasets.

rejects the null hypothesis that all methods behave similarly and, therefore, we proceed

with a post hoc Nemenyi test to evaluate the significance of the differences in the ranks.

We observe three clusters of methods whose ranks do not present a statistically significant

difference: SRFT and GP, the two projection methods, form the first cluster; AFKMC2

and Random, two sampling methods, form the second cluster; and GibbsDPP and LevS-

core, two sampling methods, form the third cluster. The methods in the first cluster are

significantly better than the methods in the second cluster and, in turn, the methods in

the second cluster are significantly better than the methods in the third cluster. Therefore,

we can conclude that projection methods outperform sampling methods for the dictionary

learning task and, importantly, k-Shape is the only method that significantly outperforms

all projection and sampling methods.

4.6.3 Evaluation of Parameter Tuning Method for WINK

Having shown the robustness of WINK and k-Shape, the first two core components of our

GRAIL framework, we now turn our focus to the evaluation of GRAIL-PT, our parame-

ter tuning method. Specifically, we evaluate GRAIL-PT against three parameter tuning

methods using the learned representations to assess their impact in terms of classification

accuracy using 1-NN classifiers and in terms of their dimensionality.

Comparison in terms of classification accuracy: Figure 4.8 shows the average rank

across datasets for each method using their classification accuracy as measure. LOOCAcc,

a supervised method to select parameters using the training set of each dataset, is ranked

first, as expected, meaning that LOOCAcc performed best in the majority of the datasets.

Interestingly, we observe that GRAIL-PT, our unsupervised method to tune parameters,
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Figure 4.9: Ranking of parameter tuning methods based on the average of their ranks, using
length as measure, across datasets.

and MaxVariance achieve similar classification accuracy to LOOCAcc. According to the

Friedman test followed by a post-hoc Nemenyi test to evaluate the significance of the differ-

ences in the ranks, only MinVariance achieves a significant reduction in terms of accuracy

in comparison to the other methods.

Comparison in terms of dimensionality: To better understand the performance of

parameter tuning methods, we evaluate the learned representations in terms of their di-

mensionality. Figure 4.9 presents the average rank across datasets for each method using

as measure the dimensionality (i.e., the length) of the learned representations. We observe

that MinVariance is ranked first meaning that MinVariance produces the most compact

representations in comparison to all other methods. However, as we have seen previously,

MinVariance also leads to a significant loss in terms of classification accuracy. In contrast,

we observe that GRAIL-PT produces representations as compact as those from LOOCAcc,

the supervised method to tune parameters. Importantly, GRAIL-PT significantly outper-

forms MaxVariance in terms of the dimensionality of the learned representations, despite

the similar performance of GRAIL-PT and MaxVariance in terms of classification accu-

racy. Therefore, we can conclude that GRAIL-PT is the only unsupervised method that

produces accurate and compact representations, similar to those produced in a supervised

manner by LOOCAcc. In contrast, MaxVariance and MinVariance produce either very high-

dimensional representations or very low-dimensional representations, respectively. Very low-

dimensional representations are desirable. Unfortunately, MinVariance is not competitive

in terms of accuracy when selecting such low-dimensional representations.
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Figure 4.10: Ranking of representation methods based on the average of their ranks, using
the approximation error as measure, across datasets.

4.6.4 Evaluation of GRAIL Against Other Representations

Previously, we focused our evaluation on the three core components of GRAIL: (i) the

comparison method; (ii) the dictionary learning method; and (iii) the parameter tuning

method. We now evaluate the performance of the GRAIL representations against represen-

tations learned used the exact KPCA algorithm.

Comparison against KPCA representations: Figure 4.10 presents the average rank

across datasets for two KPCA representations explaining 85% (KPCA-Z85) and 90% (KPCA-

Z90) of the variance in datasets and for two GRAIL representations explaining 90% (GRAIL-

Z90) and 95% (GRAIL-Z95) of the variance in datasets using the approximation error as

measure. We observe that KPCA-Z90 is ranked first, meaning that KPCA-Z90 had the

best approximation error in the majority of the datasets. GRAIL-Z95 is ranked second,

followed by KPCA-Z85, but the difference in their approximation error is not statistically

significant according to the Friedman test followed by a post hoc Nemenyi test. Therefore,

we observe that GRAIL representations must explain larger percentages of the variance in

data to achieve performance similar to that of exact representations, an expected result

considering that GRAIL is an approximate method for the exact KPCA.

4.6.5 Evaluation of GRAIL for Querying and Indexing

Having shown the robustness of all critical components of our GRAIL framework, we now

focus our evaluation on the performance of the learned representation for different time-

series mining tasks. We first evaluate GRAIL representations for time-series querying and

indexing.

Comparison against other lower bounding methods: We evaluate GRAIL-LB, our

lower bounding method for WINK, against state-of-the-art lower bounding methods for ED
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Figure 4.11: Ranking of lower bounding methods based on the average of their ranks, using
the pruning power as measure, across datasets.

(DFT-LB) and cDTW5 (Keogh-LB). Figure 4.11 shows the average rank across datasets

using as measure the pruning power (i.e., the number of comparisons the methods avoid

over all pairwise comparisons). We observe that GRAIL-LB is ranked first, meaning that

GRAIL-LB performs better in the majority of the datasets. Keogh-LB is ranked second,

followed by DFT-LB. The Friedman test rejects the null hypothesis that all methods behave

similarly and, therefore, we proceed with a post hoc Nemenyi test to evaluate the signif-

icance of the differences in the ranks. We observe no clusters, meaning that GRAIL-PT

significantly outperforms Keogh-LB and, in turn, Keogh-LB significantly outperforms DFT-

LB. Therefore, GRAIL-LB shows a significant improvement in comparison to DFT-LB, the

state-of-the-art method that operates over low-dimensional representations. Importantly,

GRAIL-LB also outperforms Keogh-LB, a method that operates over the original raw rep-

resentation of time series.

4.6.6 Evaluation of GRAIL for Classification

Having evaluated GRAIL-LB for time-series querying and indexing, we now turn our focus

to time-series classification.

Comparison against other classification methods: We evaluate our learned repre-

sentations for the task of time-series classification against the state-of-the-art classifiers

we considered to evaluate WINK (see Section 4.6.1). Figure 4.12 shows the average rank

across datasets based on classification accuracy. SVM+WINK is ranked first, meaning that

SVM+WINK performed better in the majority of the datasets. GRAIL-SVM is ranked

second and, according to the Nemenyi test, the difference in accuracy between GRAIL-

SVM and SVM+WINK is not statistically significant. The same holds for GRAIL-SVM
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Figure 4.12: Ranking of classification methods based on the average of their ranks, using
accuracy as measure, across datasets.
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Figure 4.13: Comparison of clustering algorithms.

and 1NN+cDTWOpt, which is ranked third. This result indicates that the loss in classifica-

tion accuracy of the approximate GRAIL-SVM method is negligible in comparison to the

exact SVM+WINK method. Importantly, despite this loss in accuracy, GRAIL-SVM still

performs at least as well as 1NN+cDTWOpt.

4.6.7 Evaluation of GRAIL for Clustering

Previously, we evaluated our learned representations for time-series querying and classifica-

tion. We now focus on time-series clustering, another important time-series mining task.

Comparison against k-Shape and k-AVG+ED: We evaluate GRAIL-SC, our spectral

clustering algorithm operating over our GRAIL representations, against k-Shape and k-

1 2 3

GRAIL-SC k-AVG+ED
k-Shape

Figure 4.14: Ranking of clustering methods based on the average of their ranks, using Rand
Index as measure, across datasets.
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AVG+ED. Figure 4.13a presents the pairwise differences in Rand Index accuracy between

GRAIL-SC and k-Shape, where each circle represents a dataset. We observe that GRAIL-

SC outperforms k-Shape in 57 datasets and the Wilcoxon test suggests that this difference

is statistically significant. Similarly, GRAIL-SC significantly outperforms k-AVG+ED in

66 datasets. Interestingly, GRAIL-SC is the only algorithm operating over time-series of

reduced dimensionality whereas k-Shape and k-AVG+ED operate over the original raw

time-series representations.

Statistical analysis: To verify the superiority of GRAIL-SC against the other methods,

we evaluate the significance of their differences in accuracy when considered all together.

Figure 4.14 shows the average rank across datasets for each method. GRAIL-SC is the

top method, meaning that GRAIL-SC performed best in the majority of the datasets. The

Friedman test rejects the null hypothesis that all methods behave similarly and, therefore,

we proceed with a post hoc Nemenyi test to evaluate the significance of the differences in the

ranks. We observe no clusters, meaning that GRAIL-SC, which is ranked first, significantly

outperforms k-Shape and, in turn, k-Shape significantly outperforms k-AVG+ED.

Efficiency: GRAIL-SC is the only clustering method operating over compact representa-

tions that significantly outperforms all standalone clustering methods operating over the

raw time-series representations. We now investigate whether this superiority in accuracy

has an associated penalty in efficiency. Figure 4.13b shows how much slower k-AVG+ED is

than GRAIL-SC, for each dataset. We observe that GRAIL-SC is significantly faster than

k-AVG+ED across all datasets, with the differences ranging between one order of magnitude

to two orders of magnitude. Therefore, GRAIL-SC does not only lead to more accurate

clustering of time series but, importantly, GRAIL-SC leads to significantly faster methods

for time-series clustering, as long as GRAIL representations have been precomputed.

4.6.8 Evaluation of GRAIL for Sampling

Having shown the performance of GRAIL representations for querying, classification, and

clustering of time series, we now focus our evaluation on sampling, an important subroutine
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Figure 4.15: Comparison for sampling methods.

for many time-series mining methods.

Comparison against AFKMC2 and GibbsDPP: We evaluate GRAIL-DPP, our DPP-

based sampling method that operates over GRAIL representations, against two state-of-the-

art methods for approximate sampling, for the k-means++ mechanism (AFKMC2) and the

DPP method (GibbsDPP). Figure 4.15a presents the pairwise differences in approximation

error (transformed into accuracy as discussed in Section 4.5) between GRAIL-DPP and

AFKMC2. GRAIL-DPP outperforms AFKMC2 in 54 out of 85 datasets and the Wilcoxon

test suggests that this difference in accuracy is statistically significant. Similarly, Figure

4.15b shows the pairwise differences in approximation error between GRAIL-DPP and Gibb-

sDPP. GRAIL-DPP significantly outperforms GibbsDPP in 56 out of 85 datasets.

Statistical analysis: To verify the superiority of GRAIL-DPP against the other sampling

methods, we evaluate the significance of their differences in accuracy when considered all

together. Figure 4.16 shows the average rank across datasets for each method. GRAIL-

DPP is ranked first, meaning that GRAIL-DPP performed better in the majority of the

datasets. Interestingly, AFKMC2 and GibbsDPP show no statistically significant difference

in accuracy according to the Nemenyi test.
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Figure 4.16: Ranking of sampling methods based on the average of their ranks, using the
approximation error as measure, across datasets.
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Figure 4.17: Ranking of representation methods based on the average of their ranks, using
the approximation error as measure, across datasets.

4.6.9 Evaluation of GRAIL for Visualization

Finally, we evaluate the performance of GRAIL representations against representations pro-

duced using the exact KPCA algorithm for the purpose of visualization.

Comparison against KPCA representations: Figure 4.17 presents the average rank

across datasets for two visualizations produced by KPCA explaining 85% (KPCA-Z85) and

90% (KPCA-Z90) of the variance in datasets and for two GRAIL representations explaining

90% (GRAIL-Z90) and 95% (GRAIL-Z95) of the variance in datasets using the approxima-

tion error as measure. We note that we use the exact same settings as we did to evaluate

the regular representations in Section 4.6.4. The difference in this experiment is that we

proceed with an additional normalization step across all representations and, therefore, we

observe similar behaviors as before. Specifically, KPCA-Z90 is ranked first, meaning that

KPCA-Z90 had the best approximation error in the majority of the datasets. GRAIL-Z95

is ranked second, followed by KPCA-Z85, but the difference in their approximation error is

not statistically significant according to the Friedman test followed by a post hoc Nemenyi

test.

4.6.10 Summary of Experimental Evaluation

In short, our experimental evaluation suggests that: (1) kernel methods combined with suit-

able kernel functions, such as WINK, significantly outperform state-of-the-art distance mea-

sures combined with 1NN classifiers, which debunks a long-standing perception in the time-
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series literature that 1NN classifiers are difficult to beat [Xi et al., 2006; Wang et al., 2013;

Bagnall et al., 2017]; (2) cluster centroids, such as those computed using k-Shape, can ef-

fectively serve as dictionaries of landmark time series for representation learning tasks; (3)

unsupervised tuning of kernel function parameters leads to accurate and compact time-series

representations; (4) GRAIL learns time-series representations with reasonable accuracy loss

in comparison to learning representations using exact KPCA; (5) GRAIL representations

achieve excellent pruning of time-series comparisons; (6) GRAIL representations, combined

with linear classifiers, significantly outperform state-of-the-art classifiers operating over raw

time series; (7) GRAIL representations, combined with approximate spectral clustering,

significantly outperform state-of-the-art clustering methods operating over raw time series;

(8) GRAIL representations, combined with approximate DPP sampling method, signifi-

cantly outperform state-of-the-art sampling methods operating over raw time series; and

(9) GRAIL representations, combined with approximate KPCA, achieve performance com-

parable to exact KPCA.

4.7 Conclusions

In this chapter, we addressed the problem of efficiently learning data-aware, low-dimensional

representations of time series that preserve the invariances offered by a given kernel function

(Section 4.2.6). We summarize the contributions of this chapter as follows: (i) we developed

WINK, a kernel function to compare time series under shift- and warp-invariances (Section

4.3.1); (ii) we constructed landmark time series for Nyström using our effective time-series

clustering method developed in Chapter 3 (Section 4.3.2); (iii) we presented a method

to estimate kernel function parameters and compactness of representation (Section 4.3.3);

(iv) we learned GRAIL representations by approximating the eigendecomposition of the

kernel matrix (Section 4.3.4); (v) we showed how GRAIL representations accelerate kernel

methods for major time-series mining tasks (Section 4.4); and (vi) we evaluate our ideas by

conducting an extensive experimental evaluation (Sections 4.5 and 4.6).
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Our findings show that kernel classifiers using WINK can significantly outperform 1NN

classifiers with state-of-the-art distance measures, which debunks a long-standing percep-

tion in the time-series literature that 1NN classifiers are difficult to beat [Xi et al., 2006;

Wang et al., 2013; Bagnall et al., 2017]. For indexing, GRAIL representations are more

compact and have better pruning power than current time-series representations. k-Shape

is a highly accurate method to extract dictionaries for time series, which significantly out-

performs all state-of-the-art methods. Our unsupervised parameter tuning method selects

parameters that lead to representations that have similar accuracy and length than those

representations we computed using a supervised approach. GRAIL representations require

the explanation of a larger percentage of the variance in data to match the performance

of exact representations, because one is an approximate method and the other is an ex-

act method. In all five tasks that were part of our analysis, GRAIL representations show

remarkable accuracy and efficiency.
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Chapter 5

An End-to-End System for

Predicting the Impact of Scientific

Concepts

In previous chapters, we presented a set of general purpose methods to solve important

time-series mining tasks, such as clustering and classification. Our emphasis was to develop

scalable and accurate methods to solve these tasks while operating solely over time-series

collections. However, in many complex, real-world applications, we need to measure differ-

ent facets of an underlying process, which requires operations over different types of data

(e.g., graphs, text, and time series). These operations often capture user-defined character-

istics in the form of feature vectors (i.e., sets of features). Consequently, we need to combine

features produced by different operators over different types of data to (i) construct more

advanced features to reason about the temporal relationships, trends, and patterns of sim-

pler features; and (ii) transform these features into actionable knowledge (e.g., predicting

an outcome). Importantly, because these operations often produce thousands of features,

combining features exhaustively may result in an explosion of new features that we can-

not afford to store or preprocess. Therefore, lightweight solutions are required to combine
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features in real time.

In this chapter, as well as in Chapter 6, we study large-scale, real-world applications

that provide answers in real time and combine knowledge from different types of data. Con-

sidering these requirements, our objective is to (i) develop generic, simple, and lightweight

methodologies to effectively extract features from time-varying measurements that seam-

lessly integrate with techniques developed for other types of data; and (ii) demonstrate the

impact of exploiting methods from time-series analysis to significantly improve the accuracy

of prediction models used in such large-scale, real-world applications.

To achieve this goal, in this chapter we study the problem of predicting the future

impact of scientific concepts and describe an end-to-end system developed for this task

by a team of researchers at Columbia and several other universities. First, we review the

challenges of this ambitious, yet important, problem (Section 5.1). Second, we describe

the architecture of the system to facilitate (i) extraction of characteristics from articles

in the scientific literature; and (ii) real-time prediction of the future impact of scientific

concepts (Section 5.2). Then, we outline the large number of characteristics that our system

extracts from the metadata and the full text of scientific articles and we present a variety of

principled statistical measures capable of capturing patterns in time-varying characteristics

of scientific articles (Section 5.3). Finally, we summarize the results of our large-scale

experimental evaluation (Sections 5.4 and 5.5) and conclude with the contributions of this

chapter (Section 5.6).

5.1 Overview and Motivation

Even though trillions of US dollars are allocated every year in research and development

[Grueber and Studt, 2012], only a small percentage of this amount is devoted to technologies

that will eventually have high impact for society. Therefore, it is critical to identify research

concepts that hold the most promise as early as possible. To achieve this goal, a framework

is required to predict whether a new scientific achievement will be accepted in future years.
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To address this problem, we were part of a large team that built a system to predict

the impact of scientific concepts. Specifically, given a technical term (e.g., microRNA

or rewiring), our system collects information from available articles in a reference period

and predicts if the given concept will gain prominence in the scientific literature in the

future. For example, our system, by examining scientific articles published between 1997

and 2003 related to the term microRNA, predicts that microRNA gains prominence in

scientific articles published in the later years that we study (2004–2007). Thus, our approach

predicts that microRNA will have scientific impact. In contrast, by examining scientific

articles related to rewiring in the same time period, our system predicts that this term will

not be prominent in scientific articles published in 2004–2007.

Unlike much previous work on citation prediction (see Chapter 7.3), our system collects

information from both the metadata and the full text of the available scientific articles.

From full text, our system identifies concepts, relations, citation sentiment, and the rhetor-

ical function of sentences. From metadata, our system computes the citation and author

collaboration networks. Then, the system computes several measures over the extracted

information from the articles and provides these measures as input to a time-series analysis

component, a critical component of the system that analyzes the evolution of the features

over time using a variety of principled time-series analysis methods. Finally, the system

combines all features using logistic regression and computes an overall prominence score

for the input technical term, to predict its impact in the literature. We define impact as

a function of the relative growth of term appearances over unique documents (see further

discussion on this definition in Section 5.3.3).

We conduct a large-scale evaluation over two datasets to (i) show the relative contri-

bution of features drawn from the full text of the articles in comparison to features drawn

from their metadata; and (ii) demonstrate the importance of using features from time-series

analysis for this task. Specifically, one dataset consists of 3.8 million articles with full text

from Elsevier and metadata from Thompson Reuter’s Web of Science (WOS) service. The

other dataset consists of 48 million articles with metadata only from the WOS service.
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The WOS dataset includes abstracts for each scientific article plus metadata such as title,

authors, publication venue, year of publication, and citations.

Our experiments address two questions: (i) whether a very large amount of metadata

enables better prediction even without the text features, making them redundant; and (ii)

whether tracking features over time improves the accuracy of metadata-based and text-

based features. Our experiments suggest that it is well worth the effort to obtain the full

text of scientific articles and to exploit the power of natural language analysis. Importantly,

patterns extracted from features tracked over time, especially those associated with the full

text of articles, were critically important for this prediction task.

We first present the architecture of the system we built to (i) extract characteristics

from articles in the scientific literature and (ii) perform real-time predictions of the future

impact of scientific concepts (Section 5.2). We continue as follows:

• We describe the large number of characteristics that our system extracts from the

metadata and the full text of scientific articles (Section 5.3.1).

• We present a principled methodology to capture patterns in short, sparse, and noisy

time series that we implement in the time-series analysis component, a critical com-

ponent of our system (Section 5.3.2).

• We overview the simple, yet effective, prediction model of our system (Section 5.3.3).

• We summarize our large-scale experimental evaluation (Sections 5.4 and 5.5).

Finally, we conclude and discuss the implications of our work (Section 5.6). The material

described in this chapter appears in [McKeown et al., 2016].

We now provide an overview of the prediction system.

5.2 System Architecture

Our system predicts the impact of a scientific concept, represented as a technical term,

using features derived from the full text of scientific articles as well as more traditional
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Figure 5.1: System architecture.

features derived from the metadata of the documents. The technical terms used as input

refer to specific scientific concepts and are assumed to have no synonyms.

The system is designed as a four-staged pipeline. Given an input term, our system first

computes the set of documents relevant to the term by determining when there is an exact

match between the term and the words of either the title or the abstract. As shown in

Figure 5.1, this first stage, called shard generation, produces a set of relevant documents

that we call the shard. In Stage 2, we process each document in the shard using natural

language processing, to produce annotations representing sentence segmentation, part-of-

speech tagging, and parsing of citation sentences. We then annotate each document with

the rhetorical function of each sentence using argumentative zones [Teufel, 2010], entities

and relations expressed in the text, and sentiment toward citations. In Stage 3, we compute

aggregate values for these annotations across the shards and build a coauthorship network

and a citation network for the documents in the shard. Importantly, we also generate time
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series for each feature over the years in the reference period, and produce additional features

from various functions applied to the time series, which we discuss next. Finally, in Stage 4,

our machine learning module uses the features to predict the scientific impact in the forecast

period.

The system was developed together by a large team of researchers at Columbia and

several other universities. Specifically, we had a prominent role in the design and develop-

ment of the system in general, as well as of Stage 3 in the pipeline, where we developed the

time-series analysis component (see Section 5.3.2).

5.3 Early Prediction of Scientific Impact

Our objective is to develop a methodology to extract characteristics from scientific articles

and to analyze the evolution of these static characteristics over time. To achieve that, we

first describe the large set of characteristics that our system extracts from the metadata and

the full text of scientific articles (Section 5.3.1). Then, we present a variety of principled

statistical measures capable of capturing patterns in time-varying characteristics (Section

5.3.2). Finally, we describe our simple prediction mechanism (Section 5.3.3).

5.3.1 Feature Extraction from Metadata and Full Text

Next, we present the set of features we consider from the metadata of scientific articles.

Then, in Section 5.3.1.2, we describe the set of features we consider from the full text of

scientific articles.

5.3.1.1 Feature Extraction from Metadata

This section and the research described therein were primarily developed and written by

Dragomir Radev’s group at the University of Michigan. We include this section for context

for our time-series work in the project.

Our system uses the metadata available for each article to compute some simple features
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Feature Type Feature Description

Basic
number of nodes
number of edges
number of weakly-connected components
size of largest weakly-connected component

Clustering average Watts-Strogatz coefficient [Watts and Strogatz, 1998]
average Newman coefficient [Newman, 2010]

Centrality
average degree
average closeness centrality [Freeman, 1978]
average betweenness centrality [Freeman, 1977]

Distances diameter
average shortest path

Degree distribution
degree assortativity [Newman, 2003]
in-/out-/total-degree power law exponent [Newman, 2010]
in-/out-/total-degree Newman power law exponent [Newman, 2010]
sin-/out-/total-degree power law R2 [Newman, 2010]

Table 5.1: A list of features computed for each network.

and other more complex features based on networks. For the simple features, which we call

acceptance features, we consider the number of unique papers, authors and their countries,

institutions, conferences, journals, and books. Additionally, we compute the mean number

of authors per paper, the number of papers with two or more authors, the number of papers

with authors affiliated with multiple institutions, and the number of papers with authors

from different institutions. For the network-based features, network theory [Newman, 2010]

provides a number of tools to model aggregate information in relational data. Several recent

papers have focused on applying network techniques to analyze bibliometric data [Batagelj

and Cerinšek, 2013; Viana et al., 2013; Fu et al., 2014; Pan et al., 2012]. The use of

networks to model bibliometric data such as collaborations between authors and citations

between papers is based on the view of science as a social process [Sun et al., 2013]. We

derive network features (specified in Table 5.1) from two kinds of networks, namely, author

collaboration networks and citation networks. In an author collaboration network, nodes

represent authors and undirected edges represent the fact that two authors co-authored

at least one paper.1 In a citation network, nodes represent documents and directed edges

record that one document cites the other (only within a given shard). Citation links between

papers indicate topical similarity [Small, 1973; Kessler, 1965]. Many dense clusters in

1We used the author resolution results produced by [Wick et al., 2013].
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a citation network may represent fragmented communities of research where documents

position themselves relative to papers in the same cluster and do not frequently cite other

papers in the area. Similarly, a low clustering coefficient may indicate that a field tends

to make large, disruptive advances [Funk and Owen-Smith, 2012], rather than incremental

improvements.

In contrast, collaborations provide a more direct probe into the social dynamics of

research on a given topic. For example, dense clusters in this network represent close-

knit communities that exist among the authors in a field. Similarly, an author with high

betweenness centrality, an indicator of the node’s centrality in the network, may act as a

bridge between two different communities that do not frequently collaborate.

Given a shard, these networks can be built efficiently using our metadata database.

The citation network is built by querying a database table that contains resolved citations

between papers;2 the author collaboration network is built by querying a table containing

authors of each paper.

5.3.1.2 Feature Extraction from Full Text

Our full text features are computed based on aggregates of information extracted from the

text of each article: entities and relations, argumentative zoning, and citation sentiment.

The entity extraction research described in this section was primarily developed—and the

associated description included here written by—Michael Collins’s group at Columbia Uni-

versity. The relation extraction research described in this section was primarily developed—

and the associated description included here written by—Luis Gravano’s group at Columbia

University. The argumentative zoning and citation sentiment research described in this sec-

tion was primarily developed—and the associated description included here written by—

Simone Teufel’s group at Cambridge University. We include these important building blocks

of our system here for context for our time-series work in the project.

2Resolving a citation is the process of using the bibliographic text to locate the cited paper in the
database.
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Entities and Relations: We identify two types of textual information, namely, entities

and relations. The information that we extract enables a more refined analysis of crucial as-

pects around a given topic than would be possible using the original unannotated text. For

example, we can extract the number of algorithms that have been implemented for a given

input problem, and use it as evidence of the depth in which this problem has been studied.

Similarly, we can gauge the interest in a research topic based on the diversity of funding

agencies involved in the topic. Entities (e.g., focus, techniques, and domains [Gupta and

Manning, 2010]) and relations (e.g., protein–protein interaction [Bui et al., 2011]) involving

them have been extracted from scientific articles, although to the best of our knowledge,

they have not been used in scientific prominence prediction systems.

The entity detection module produces annotations consisting of an entity type (e.g.,

algorithm, dataset, gene, virus, protein, database) and a mention (e.g., CRF, an instance of

algorithm; BRCA1, an instance of gene). We recognize a total of 15 entity types. Some of the

entity types are general to all domains (e.g., method, problem, theory) and others are specific

to the most frequently occurring family of domains in the corpus (e.g., medical, genomic,

biology). We define the primary type as the entity type corresponding to the scientific term

given as input to our system if it matches one of our 15 entity types. Otherwise, it is the

entity type with the highest document frequency in the shard. We can now measure how

cohesive a shard is by using the proportion of articles containing a mention of the primary

entity type in the shard. We can also measure how diverse it is by counting the number

of distinct mentions of the primary entity type in the shard. If the term is an entity, we

also compute as features the frequency and corresponding rank of the term with respect to

other entities of the same type—both absolute and normalized—and the ratio between the

frequency of the input term and the most frequent entity of its same type.

To annotate the entities, we use a dictionary-based tagger [Neelakantan and Collins,

2014]. Dictionaries are compiled for every named entity type using large amounts of un-

labeled data and a small number of labeled examples. For every named entity type, first

we construct a high recall, low precision list of candidate phrases by applying simple rules



CHAPTER 5. AN END-TO-END SYSTEM FOR PREDICTING THE IMPACT OF
SCIENTIFIC CONCEPTS 142

on the unlabeled data collection. Using Canonical Correlation Analysis (CCA) [Hotelling,

1936], we represent each candidate phrase in a low-dimensional, real-valued space. Finally,

we learn a binary SVM [Joachims, 1998] in the low-dimensional space with few labeled

examples to classify the candidate phrases. We filter out the noisy phrases from the high

recall, low precision list of candidate phrases using the learned SVM to get a high recall,

high precision dictionary.

Table 5.2 lists the relations that we extract. For the Funding relation, we produce

frequency- and average-based features indicating the number of funding agencies and the

number of grants in each article. In addition, we produce Boolean features indicating

whether there are multiple grants or institutions supporting the research reported by articles

in the shard. For the other relations, we extract all the mentions of each type in an article

and then produce numeric features indicating their frequency and average in the shard. To

annotate the relations, we use two different methods. For funding information, we can, in

some cases, retrieve it directly from the article metadata. However, in most cases, especially

for older articles, we can only obtain this information from text, as follows. We first use

string matching to locate the acknowledgment section of the article in question, where the

funding information for the article usually resides. Then, we use two supervised Conditional

Random Fields (CRF) models [Lafferty et al., 2001] to identify the funding agencies and

grant numbers. Finally, we build 〈funding agency, grant〉 pairs by combining the agencies

and grants that co-exist in a sentence in order of appearance. To annotate the remaining

relations, we use a supervised sentence classification approach [Bach and Badaskar, 2007].

Since only a few of the sentences in an article will likely include a mention of these relations,

for efficiency we only classify the sentences that mention at least one of the 10 most relevant

terms according to their weight in the SVM classification model. In our experiments, we

used an SVM-based classifier trained on stemmed terms along with their respective POS

tags as features, from a manually annotated dataset. The accuracy of our classifiers ranges

from a value of 0.72 for the F-measure for the Novelty Claims relation to a value of 0.89 for

the Funding relation.
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Relation Name Entities Meaning
Funding 〈grant, funding agency〉 a grant by funding agency supports an article

Novelty Claims 〈method, problem〉 an article applies a method to a problem
Dataset Purpose 〈dataset, purpose〉 an article proposes or uses a dataset

Table 5.2: Relations extracted by the system.

Argumentative Zoning: The argumentative zoning (AZ) component marks up each

sentence in a scientific document according to its rhetorical function. We expect that an

entity’s prominence in the scientific community is reflected in the way scientists write about

it, such as whether the entity is presented as a novel contribution (AZ category Own

Work) or a well-established concept in the literature (AZ category Background). The

relevance of such rhetorical categories comes from the hypothesis that the first occurrence

of new ideas should be in some paper’s goal statement [Myers, 1992]. However, as the

idea emerges and gets accepted, it is mentioned in other areas of papers referring to the

original idea—thereby “travelling” through other rhetorical categories. When the new idea

is competing against other existing ideas, it will occur in contrast and comparison statements

[MacRoberts and MacRoberts, 1984]. If it is adopted by other researchers in the field, it

will be mentioned as the basis for their work, indicating a different phase of acceptance

(or a different status of the cited idea). If the concept becomes widely accepted, it will

be found with increasing frequency in rhetorically neutral sentences and eventually even

in background sections [Swales, 1990]. These ideas are formalized in the “argumentative

zoning” theory of Teufel [Teufel, 2010], whereby the text of an article is partitioned into

zones defined by their rhetorical function.

The core functionality of the AZ component in our system is automatically labeling each

sentence in an article with a category specifying the rhetorical status of that sentence. We

use six categories: Aim, Own Work, Background, Contrast, Basis and Other; for

more details on these categories, see [Teufel, 2010]. The document-level AZ system takes a

document as input and labels every sentence with one of the six categories listed above, using

a Maximum Entropy Markov Model classifier suitable for sequential labeling. The features

extracted for each sentence include internal information about the words, n-grams and
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citations it contains as well as external information about its absolute and relative position

in the document, the section in which it appears, and whether a string from an extensive

pattern lexicon matched. This system has been trained using a manually annotated set of

documents from the computer science and chemistry domains. Using cross-validation on

the chemistry subset of the data, the system’s accuracy has been measured at 75%.

To produce AZ indicator values for a concept term, we aggregate over the AZ labels of

all sentences that contain a mention of the term. The aggregate indicators we produce are

the absolute count totals of each AZ label in the set and the relative count proportions of

each AZ label in the set, for a total of 12 indicators.

Citation Sentiment: The Citation Sentiment component labels each sentence containing

a citation as expressing positive, negative or objective sentiment towards the cited entity. It

implements the hypothesis that emerging ideas will initially be cited in the context of strong

opinions, whether these are negative or positive ones [Small, 2011]. We also hypothesize

that the more an idea is accepted in a scientific community, the more it will be presented as

an “objective fact.” As might be expected, most citations in scientific articles are objective

in terms of sentiment (86% of sentences in the annotated corpus described below); this

may be an indication that positive or negative citations are somewhat rare, and may be

important.

Similarly to the AZ component, the citation sentiment module first assigns sentence-level

labels and later aggregates over them to produce feature values for the entity of interest.

The sentence-level classifier, based on Athar [Athar, 2011], is a Support Vector Machine

that takes n-gram features and basic negation features as input and outputs one of three

sentiment labels: Positive, Negative or Objective. It was trained on Athar’s corpus of

8,736 hand-labeled citation sentences. The entity-level feature values are then calculated

as total and proportional counts of these labels over a set of sentences that are relevant to

the entity of interest. Because citation sentiment is by definition only meaningful in the

presence of citations, we aggregate over all sentences that contain the term and also contain

a citation. The performance of the citation sentiment component has a value of 0.6 for the



CHAPTER 5. AN END-TO-END SYSTEM FOR PREDICTING THE IMPACT OF
SCIENTIFIC CONCEPTS 145

macro-average F-measure.

5.3.2 Feature Aggregation and Temporal Pattern Extraction

Until now, we have described a large number of characteristics that our system extracts

from the metadata and the full text of scientific articles. To capture the temporal variation

of such characteristics, we present a lightweight, yet effective, Time-Series Analysis (TSA)

component to extract features from time-varying characteristics. In previous chapters, we

presented a set of general purpose methods to perform major tasks that solely rely on time-

series analysis. However, in many real-world applications we need to combine methodologies

developed for different types of data in real time. Considering that such methodologies often

produce thousands of features, combination of features result in an explosion of new features

that we cannot afford to store or spend time to preprocess. The real-world application we

consider in this chapter belongs to this category.

We develop a TSA component that operates over raw time series, without the need to

preprocess or store time series. Specifically, for every feature given as input, TSA computes a

time-series sequence that represents its aggregated values per year, instead of its aggregated

value for the full time period. Such time-series sequences are short (i.e., corresponding to a

small reference period), noisy (i.e., as is the case when terms match documents unrelated

to the scientific concept), and with missing values (i.e., as is the case when the years in the

reference period do not contain any documents). To circumvent such conditions and capture

how these characteristics grow and fade over time, we model time series using six growth

functions: Linear, Quadratic, Logistic, Exponential, Gompertz, and Richards. For the

Linear and Quadratic functions we use linear least-squares estimates; for the other functions

we use non-linear least-squares estimates of their parameters. Once all functions have been

fitted to a time series, we select the function with the smallest Akaike Information Criterion

(AIC) [Akaike, 1974] value as the best. We use the name of the best-fitted function, as well

as its slope, as features for our ML component. We also use as features the coefficients of

the first and second degree terms of the Linear and Quadratic functions, respectively, with
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which we can determine the trend and its rate of change.

In addition to these model-based features, we also consider a variety of statistical mea-

sures from the literature to capture global characteristics of time series and detect interesting

patterns. In particular, we use 9 such characteristics and compute them as proposed by

[Wang et al., 2006]. Briefly, Seasonality, Periodicity, and Trend are features that attempt

to detect cycles, the period of those cycles, and the strength of the long-term trend of a

time series. Skewness measures the degree of asymmetry of data points of a time series

around their mean and Kurtosis measures the peakness and flatness of data points, rel-

ative to a normal distribution. Serial correlation measures how noisy a time series is by

fitting a white noise model, and is defined as the Box-Pierce Statistic [Box and Cox, 1964].

Non-linearity measures the non-linearity structure of time series data, from which we can

determine if linear or non-linear models can better forecast the data [Teräsvirta et al., 1993].

Self-similarity, which relates to the autocorrelation statistic, measures the long-range de-

pendence of a time series; we compute this feature as the Hurst Exponent [Willinger et al.,

1998]. Finally, we use the Lyapunov Exponent, which measures the chaotic behavior of a

time series, to detect the degree of randomness [Hilborn, 2000].

5.3.3 Prediction Model and Methodology

This section and the research described therein were primarily developed and written by

Hal Daumé’s group at the University of Maryland. We include this section for context for

our time-series work in the project.

Our system was developed as part of a government funded program to predict the

scientific impact of entities such as terms in some future forecast period F given some

observations in the reference period R where R < F . Scientific impact is quantified by

the program in the form of ground truth functions (GTFs) that concentrate on the relative

growth of term appearance in unique documents over a baseline count as opposed to absolute

growth. Previous work has often looked at absolute growth of counts such as citations

[Yogatama et al., 2011]. The underlying motivation of GTFs is to temper variance in count
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quantity across disciplines (e.g., biology tends to have more publications than pure math)

and time (i.e., absolute publication counts increase from past to present). The ground

truth function (GTF) considers documents from three trusted sources, namely, Science,

Nature, and the Proceedings of the National Academy of Sciences (PNAS), denoted as TS-

documents. Formally, the GTF for a term e is defined in terms of document counts for e

over R or F :

1. r(e): exponentially weighted average of counts of unique TS-documents containing e

for the years leading up to and including R, where the interval used for averaging

is the size of the forecast gap and where counts in recent years are weighted more

heavily.

2. f(e): exponentially weighted average of counts of unique TS-documents containing e

for the years up to and including F , where the interval used for averaging is the size

of the forecast gap and where counts in recent years are weighted more heavily.

When f(e) < max(1, r(e)) the GTF is defined to be zero, otherwise it produces values in

the range from 0 to 1, as follows:

GTF(e,r,f) =
(

1− r(e)
f(e)

)(
1− 1

f(e)

)
(5.1)

The goal of the system is to predict GTF(e,r,f ), having observed e and its derived

features in the dataset up to reference period R. In sum, the goal is to predict the ground

truth function of e at F (i.e., the relative increase in counts of unique TS-documents in

which e appears) having observed e up to R.

Since most papers receive no citations or a very small number of citations, the distri-

bution of GTF values for our datasets tends towards an exponential distribution as the

distance between R and F increases. GTFs for terms range from 0 to 1 and thus, it is pos-

sible to model the desired prediction using vanilla logistic regression [Hastie et al., 2009].3

3An alternative would be to train a model to predict the cumulative counts r(e) and f(e), from which the
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Though logistic regression is typically used in the literature for classification, it can be

directly applied to regression tasks where the output ranges from 0 to 1 by defining the

objective function in terms of minimizing the KL divergence between the GTF and the

hypothesis.

We now turn to the description of the settings of our large-scale experimental evaluation.

5.4 Experimental Settings

In this section we describe the datasets and the settings of our experimental evaluation.

Datasets: Our dataset includes 3.8 million full text articles published by Elsevier as well

as 48 million metadata records from Web of Science (WOS).4 The metadata includes titles,

author names and institutions, in some cases funding, citations with the IDs of cited pa-

pers, and abstracts. The full text of the Elsevier articles was parsed into a common XML

representation that identifies not only metadata, but in many cases also provides structural

markup for the text, such as identifying tables, sections, and paragraphs, and linking in-text

citations to the corresponding bibliography entries.

System variants: We conducted experiments to compare systems that use only text-based

features with systems that use more traditional metadata features, as well as systems that

use both on a dataset of scientific documents published within 1991–2007. We ran each

system to forecast scientific impact in four different scenarios varying the forecasting period

from one year past the reference period (chosen as 2003) to four years past the reference

period, i.e., 2004 to 2007. Finally, each of the above settings was evaluated over a dataset

that contained all 48 million documents in the Web of Science metadata records as well

as the subset of Elsevier-published documents for which the full text of the document was

available. In total, this yields 24 experimental configurations: 3 systems to predict scientific

impact on 4 forecast years for 2 datasets.

GTF can be calculated. We adopted our current approach after preliminary experiments on development
data.

4This dataset was provided by the government sponsor to all teams who were part of the funded program.
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Term 2004 2005 2006 2007
dopamine signaling 0.250 0.062 0.208 0.249
lower ros 0.000 0.000 0.000 0.000
rewiring 0.222 0.000 0.000 0.145
wd40 0.000 0.250 0.585 0.629
microrna 0.547 0.857 0.863 0.905
cell self-renewal 0.188 0.393 0.332 0.330
plant homeodomain 0.000 0.000 0.492 0.718

Table 5.3: Example GTF values for four forecast periods.

Scientific concepts: Our experiments were conducted on 5923 terms from a list provided

by the evaluators for our funding agency. A term is an n-gram from one to four words;

the term population is drawn from abstracts and titles of documents published within the

trusted sources (Nature, Science and PNAS) in the time period from 1991 to 2007. Terms

were filtered using a common stop word list, low frequency terms5 and common scientific

terms. Some examples are provided in Table 5.3 along with the GTF value defined by

Equation 5.1. We selected terms using the following methodogy. We tallied all documents

that contain the term in its title or abstract and retained terms for which at least 10%

of the computed documents came from the Elsevier collection and therefore had full text.

This is the same method used to compute shards and thus, we knew that the shards used

for prediction would not be empty when restricted only to the Elsevier collection.

Evaluation methodology and metrics: We used five-fold cross validation, with 90% of

the data in each fold used for training and the rest used for testing. We compare our system

results to the gold standard GTF values using Pearson correlation r, a measure of linear

correlation between two variables, and Spearman rank correlation ρ, a non-parametric mea-

sure of the dependence between the ranking of two variables. For analysis, we categorized

the features as metadata or full text features. Earlier experiments on development data

showed that time-series analysis over argumentative zoning, sentiment and co-authorship

was not helpful and, therefore, we did not include these features in the evaluation.

5Since we are evaluating impact within our corpus, if a term has low frequency, then it never emerges
within the time frame of the corpus. It is possible that it emerges years later, but we will never be able to
evaluate whether we can detect this.
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Model R2 τ
Linear regression -0.025 0.322
Regression tree 0.160 0.339
Random forest 0.200 0.345
Gradient boosted decision tree 0.235 0.372
Support vector regression 0.253 0.355
Logistic regression 0.263 0.372

Table 5.4: Performance per regression model on held-out development set using metadata
features only.

5.5 Experimental Results

In this section, we report our experimental evaluation, which we conducted jointly pri-

marily with Snigdha Chaturvedi (University of Michigan) and Kapil Thadani (Columbia

University). Firstly, we compare our prediction model against other types of models (Sec-

tion 5.5.1). Secondly, we evaluate our three system variants on predicting the impact of

scientific concepts over two datasets (Section 5.5.2). Finally, we evaluate the contribution

of each feature category and each individual feature (Section 5.5.3).

5.5.1 Evaluation of our Prediction Model Against Other Models

For our predictions we rely on logistic regression because of its simplicity and efficiency.

In addition to logistic regression, we also considered other standard regression models for

the task of modeling the GTF. Specifically, we considered: linear regression [Hastie et al.,

2009], regression trees [Breiman et al., 1984], random forests [Breiman, 2001], gradient

boosted decision trees [Friedman, 2001], and support vector regression [Guyon et al., 1993;

Cortes and Vapnik, 1995; Smola and Schölkopf, 2004]. Using the metadata features only, we

train models on a set of documents with GTFs defined for the period R= 2003 and F = 2007.

Then, we evaluate the models on a held-out dataset over the same period in terms of R2

and Kendall’s τ . The results in Table 5.4 show that logistic regression outperforms all other

models in R2 and is tied with gradient boosted decision trees in τ . Thus, we use logistic

regression as the model for our system.
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Indicators Dataset r ρ
All indicators Elsevier 0.364 0.392
Text only Elsevier 0.346 0.373
Metadata only Elsevier 0.194 0.193
All indicators Complete 0.393 0.428
Text only Complete 0.365 0.407
Metadata only Complete 0.316 0.340

Table 5.5: Comparison of the correlation of the system predictions with the ground truth
using all indicators, text only indicators, and metadata only indicators for reference year
2003 and forecast year 2007. Column r corresponds to the Pearson correlation coefficient
while column ρ corresponds to the Spearman rank correlation.

5.5.2 Evaluation of System Predictions

Figures 5.2 and 5.3 illustrate how our predictions correlated with the ground truth over the

four forecast years. We also show numeric results in Table 5.5 for reference year 2003 and

forecast year 2007.

Figure 5.2 shows the results for experiments carried out on full text drawn from Elsevier;

the top graph shows Pearson r and the bottom one Spearman ρ. Here metadata features

underperform text-based features by a substantial margin as measured by ρ and thus, the

benefit of full text in comparison to metadata is clear. Adding text-based features to

metadata-only features also substantially improves the results. Our results show that the

combination of full text and metadata performs the best, outperforming the text indicators

only by a slight margin, as indicated by r. These results illustrate that the metadata

features add value.

Figure 5.3 shows the results for experiments carried out on the full dataset, including

both Elsevier and WOS records. In this case, the shard, which includes all documents rele-

vant to the term, is substantially larger. We might expect metadata features to outperform

text-based features since the citation and co-authorship networks that are built can be more

comprehensive: more articles corresponding to the citations will be found in the dataset.

Furthermore, the metadata acceptance features will be drawn from all articles, while the

text features will only be drawn from a subset. We observe a substantial improvement in

metadata alone, but the results still do not surpass those of the text-based and the full set of

features. Under Spearman ρ, both the system based on text-based features and the system
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Figure 5.2: Comparison of the correlation of the system predictions with the ground truth on
the Elsevier dataset using all indicators, text only indicators, and metadata only indicators
for four forecast years. The top figure corresponds to the Pearson correlation coefficient r
while the bottom figure corresponds to the Spearman rank correlation ρ.

based on combined text-based and metadata perform significantly better (p < 0.05 using

the paired permutation test) than metadata only across all forecast years except 2005. Note

that the system using text-based features also improves, because the larger dataset contains

abstracts and text features are extracted from these. The text-only system and the system

using a combination of text and metadata indicators are similar in performance, with the

combination of features usually slightly outperforming their text-only counterparts.

5.5.3 Contribution of Individual Features and Feature Categories

Table 5.6 reports an ablation study of the system for 2006, the first year where combined text

and metadata features outperform text-only features according to Spearman ρ. We show the

performance using individual indicators in isolation, sorted by Pearson r. Text indicators
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Figure 5.3: Comparison of the correlation of the system predictions with the ground truth on
the dataset containing Elsevier and WOS records using all indicators, text only indicators,
and metadata only indicators for four forecast years. The top figure corresponds to the
Pearson correlation coefficient r while the bottom figure corresponds to the Spearman rank
correlation ρ.

are shown in bold. The top performing indicators are times series over entities, acceptance,

and relations, of which only acceptance is derived from metadata. Network indicators

perform at the bottom of the times-series indicators and near the bottom of the regular

indicators. Argumentative zoning, a text indicator that reflects the rhetorical structure of

the article, performs near the top of individual indicators. We see two unexpected results:

1) acceptance, which is a metadata indicator, performs well, both in conjunction with time

series indicators and without such indicators; and 2) citation sentiment performs poorly.

Acceptance simply counts the number of venues, authors, and institutions in the shard

of relevant documents: the more places and authors that have published on this topic, the

more impact it has had. Other than these two exceptions, the individual results support our
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Indicators r ρ
TSA:entities 0.301 0.317
TSA:acceptance 0.293 0.313
TSA:relations 0.191 0.195
Acceptance 0.19 0.214
Argumentative Zoning 0.188 0.215
Citation network 0.147 0.193
TSA:networks 0.131 0.148
Coauthorship network 0.123 0.164
Citation sentiment 0.0679 0.078

Table 5.6: Ablation tests for different feature categories for forecast year 2006. Bold text
indicates full-text features. Column “r” corresponds to the Pearson correlation coefficient
while column “ρ” corresponds to the Spearman rank correlation.

overall results showing that text indicators tend to perform better than metadata indicators.

We see that the time-series indicator over entities is the top performing indicator. We

believe this is because we expect the shards centered around prominent entities to be more

cohesive and less diverse over time. We hypothesize that cohesiveness increases with the

number of mentions of the prominent entity type, while diversity decreases because there

are fewer comparisons to other entities of the same type. This occurs precisely because

people accept that the prominent entity is important. For example, consider a gene that

is in the process of being mapped. We would have discussions of other related genes early

on and, later on, when that gene becomes more important, it would appear more in the

context of the disease it is important for and the drug that it reveals should be used, as

opposed to discussion of other genes. As time goes on, we would also see more documents

that mention the gene.

On the other hand, we see that the time-series indicators over argumentative zoning

and citation sentiment do not improve the performance in comparison to the regular argu-

mentative zoning and citation sentiment indicators, respectively. We believe this is because

the distributions of the frequencies of the predicted labels remain the same when argumen-

tative zoning and citation sentiment indicators are computed over the full reference period

and when they are computed for each year separately. Therefore, for efficiency, we omit

the computation of time-series indicators over argumentative zoning and citation sentiment

indicators.
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In addition to the indicator-level ablations, we also looked at individual feature per-

formance using their odds ratios. While the ablations show the overall contribution of an

indicator (which combines multiple features), all indicators contain important individual

features. For example, although TSA:networks is not among the highest performing indi-

cators, some of its member features (e.g., the slope of the growth function best fitted to

the article citation count) are among the best overall. Similarly, the total counts of the

AIM and OWN categories from Argumentative Zoning, among others, are some of the most

powerful features. Finally, we observe that for the vast majority of the time-series indica-

tors, model-based features perform better than the statistical measures that capture global

characteristics of the time series. In Chapter 6, we use these insights and focus solely on

the simplest model-based features to facilitate temporal feature extraction on a problem

involving large-scale time-series datasets.

5.6 Conclusions

In this chapter, we demonstrated the impact of exploiting methods from time-series analysis

to significantly improve the effectiveness of domain-specific prediction models. Together

with a large team of researchers at Columbia and several other universities, we developed a

system to tackle the ambitious problem of predicting the future impact of scientific concepts.

Regarding our sole contributions in such large-scale effort, we had a prominent role in the

design and development of the system in general (see Section 5.2), as well as of the time-

series analysis component (see Section 5.3.2). In addition, along with two other students,

we performed the large-scale experimental evaluation that appears in Sections 5.4 and 5.5.

We summarize the contributions of this chapter as follows: (i) we presented the ar-

chitecture of the system we built to extract characteristics from articles in the scientific

literature and to perform real-time predictions of the future impact of scientific concepts

(Section 5.2); (ii) we described the large number of characteristics that our system extracts

from the metadata and the full text of scientific articles (Section 5.3.1); (iii) we presented
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a principled methodology to capture patterns in short, sparse, and noisy time series that

we implemented in the time-series analysis component, a critical component of our system

(Section 5.3.2); (iv) we described a simple, yet effective prediction model of our system

(Section 5.3.3); and (v) we performed a large-scale experimental evaluation to study the

importance of considering features over the full-text of scientific articles and to measure the

effectiveness of temporal features (Sections 5.4 and 5.5).

Our results show the clear benefit of full text features over metadata and that temporal

features contribute the most in predictions. Specifically, when prediction is performed on

a dataset including only full text articles, a system that exploits features drawn from full

text performs significantly better than a system that only uses metadata features. The

addition of all data in WOS yields an improved performance of metadata features, both in

the metadata only performance and in the full feature performance. Nonetheless, across all

metrics, the text features are so strong that even in this scenario, where metadata features

are computed over all documents relevant to a term while text features are computed

over only a subset of the relevant documents, the model based on metadata alone cannot

outperform text features. The benefit of the analysis of the full text of scientific articles is

well worth the increased performance cost of the natural language analysis. Importantly,

across all experiments, combinations of full text features and metadata features with time-

series relevant features yielded the greatest impact than any other indicator considered in

our analysis.

This is of particular importance, considering the lightweight methodology used in our

TSA component. In previous chapters of this dissertation, we developed effective methods

for tasks that rely on standalone time-series collections. Instead, in this chapter we focused

on a method to (i) combine features produced by different methods over different types

of data; and (ii) construct more advanced features that can reason about the temporal

relationships, trends, and patterns of simpler features. We believe such simple methodology

is well-suited for applications where underlying operations produce thousands of features

and, therefore, an exhaustive combination of the features would be prohibitively expensive.
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In the next chapter, we use a similar methodology to capture temporal characteristics over

information extracted from web search logs to predict early web searchers experiencing

devastating diseases.
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Chapter 6

Detecting Devastating Diseases in

Search Logs

In Chapter 5, we developed a lightweight methodology to extract features from short, sparse,

and noisy time series with minimum preprocessing and storage requirements. In addition,

we deployed that methodology as a critical component of an end-to-end system for pre-

dicting the future impact of scientific concepts. Our results demonstrated the importance

of exploiting methods from time-series analysis to significantly improve the effectiveness of

prediction models for this task. In this chapter, we rely on a similar methodology to extract

features from short, sparse, and noisy time series that often appear in the analysis of web

search engine logs. Specifically, together with Eric Horvitz and Ryen White, our collabo-

rators from Microsoft Research, we explore the promise of harnessing temporal patterns in

behavioral signals extracted from web search engine logs for early detection of devastating

diseases. First, we provide an overview of the problem and its challenges (Section 6.1).

Second, we review the necessary background regarding the ontology of symptoms and the

process to create the dataset utilized in this study (Section 6.2). Then, we describe the large

number of characteristics that we extract from such dataset and present the methodology

to track the temporal relationships and patterns in the content of queries over time (Section

6.3). Finally, we summarize the results of our large-scale experimental evaluation (Section
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6.4) and conclude with the contributions of this chapter (Section 6.5).

6.1 Overview and Motivation

Web search is a primary resource for people concerned about the significance of health-

related symptoms [Fox and Duggan, 2013]. Researchers have studied symptom and illness-

related searches in pursuit of insights about how people search about health concerns,

including patterns of querying and review of information in pursuit of diagnoses [White and

Horvitz, 2012], healthcare utilization signals [White and Horvitz, 2014], traces of therapeutic

decision making for challenging illnesses [Paul et al., 2014], and identification of new adverse

effects of medications [White et al., 2013]. Prior studies have examined how population-

level signals in social media can be used to detect the emergence of diseases [De Choudhury

et al., 2013; Ginsberg et al., 2009].

We explore the prospect of harnessing anonymized long-term sequences of health-related

search queries to yield information that could provide valuable signals for detection of ill-

ness in advance of traditional diagnosis. Leveraging online behavioral data to provide earlier

detection of a disease or of the raised risk of illness on a large scale can make significant

contributions to healthcare. Better outcomes can be achieved by earlier confirmation of ill-

nesses and risks via gaining access to more timely diagnoses, treatments, and other proactive

interventions. As an example, such capabilities might help to identify those at significant

risk of suffering the onset of chronic disease processes, such as diabetes or heart disease,

or the rise of acute processes such as atrial fibrillation or more severe cardiac arrhythmias.

Interventional programs ranging from changes in diet or exercise to taking (or avoiding)

certain medications can yield significant health benefits.

The diagnosis for certain medical conditions can be particularly devastating if the

chances of survival are typically low at the time of diagnosis. Survival rates may be improved

significantly via earlier detection and treatment. With many cancers, screening methods

can be effective for early detection and therapy [Pepe et al., 2001], but they involve ex-
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Searchers in A who query for 
symptoms but have no experiential 
queries.

Pancreatic cancer 
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Figure 6.1: Venn diagram depicting sets of users employed in analyses: pancreatic cancer
searchers (A), pancreatic cancer searchers exhibiting experiential diagnostic queries (B),
and those who search for the symptoms of pancreatic cancer (C). |A∪C| (i.e., the number
of users in the original, pre-filtered dataset) is 9.2 million. Positives and negatives are
sourced from B∩C and C \A, respectively. Relative set sizes are not to scale.

plicit testing prompted by policies around risk factors such as family history [Lynch et al.,

1996] or medical history [Everhart and Wright, 1995; Lowenfels et al., 1993]. Ideally, health

screening systems would be able to observe people passively as they engage in their normal

activities and alert them (per their preferences on vigilance) to potential health risks without

requiring the investment of time and effort in special screening activities. Individual-level

postings on social media have been mined for this purpose [De Choudhury et al., 2013;

Sadilek et al., 2012], but may not have representative coverage of symptoms associated

with social stigma [De Choudhury et al., 2014].

We present a study of the feasibility of doing early detection of devastating diseases

based on large-scale logs of health-related web search activity. An important aspect of

our analysis is to consider the content of queries over time, and the prospect that temporal

relationships and patterns among queries over multiple sessions over several months provide

subtle fingerprints of lurking illness. We rely on the methodology developed in Chapter 5

to analyze the evolution of features extracted from query logs over time using a variety of

principled time-series analysis methods. We focus on the early detection of the presence
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of pancreatic cancer, a devastating diagnosis given the typical progression of the disease to

an inoperable situation by the time it is found. Our work showcases the potential value of

innovative approaches for speeding up the time to diagnosis of this deadly disease.

Pancreatic cancer is the fourth leading cause of cancer death in men and women in

the United States and the sixth leading cause in Europe [Michaud, 2004]. The illness is

widely known as being difficult to detect and is frequently diagnosed too late to be treated

effectively [Hruban et al., 2000; Li et al., 2004]. A recent study found that the progression

of pancreatic cancer from stage I to stage IV happens in just over one year [Yu et al., 2015].

Approximately 75% of pancreatic cancer patients die within a year of diagnosis, and only

about 4% survive for five years post diagnosis. Exploration of the possibility that a patient

has pancreatic cancer involves a careful and costly consideration of history, labwork, and

imaging studies (in contrast to the passive screening methods described in this chapter)

[Rulyak et al., 2003]. Screening is largely performed to detect the disease at an early

phase (pre-invasive or early invasive) when it is still curable by surgical intervention and

chemotherapy. Earlier diagnosis of pancreatic cancer improves the feasibility of discovering

the illness at an earlier stage [Chari et al., 2015]. For patients diagnosed early who undergo

curative surgery (e.g., a Whipple procedure), five-year survival rate is higher, but it remains

less than 25% [Yeo et al., 1997].

We take as a proxy for ground truth of a diagnosis of pancreatic cancer the detection

of experiential diagnostic queries issued by searchers. Experiential queries show strong ev-

idence of being linked to the actual presence of symptomatology or conditions versus less

directly involved, more distant exploratory queries seeking information about symptoms or

diseases [Paul et al., 2014]. Experiential diagnostic queries for pancreatic cancer are iden-

tified via consideration of the structure of queries and of patterns of information gathering

over multiple users in search logs. Experiential queries often include first-person assertions

such as [i was just diagnosed with pancreatic cancer ], which when associated with prior

queries about symptoms identifies the positive cases.

We construct models to predict the future rise of experiential queries from longitudinal
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search data. Figure 6.1 shows the different subsets of users in our analysis, including people

who search for pancreatic cancer (A), the subset of these searchers who issue experiential

diagnostic queries (B), and those who search for a set of symptoms linked to pancreatic

cancer (C). Those who only search for one or more related symptoms with no evidence of

pancreatic cancer searching constitute the negative cases. We conduct a large-scale evalua-

tion to address two questions: (i) whether we can detect cases where people show evidence

of being diagnosed with pancreatic cancer many months in advance of their experiential

diagnostic queries; and (ii) whether considering the temporal relationships and patterns

of features extracted from query logs over time improves the accuracy of our prediction

models. Our results affirmatively answer both questions. Specifically, we find that our

methods can detect cases where people show evidence of being diagnosed with pancreatic

cancer many months in advance of their experiential diagnostic queries. In addition, our

experiments suggest that it is well worth the effort to track features over time and analyze

their temporal relationships because such features are critically important for this prediction

task.

With this research, we introduce the early detection of diseases as a promising new

application of search log mining and machine learning that scales to millions of searchers.

We continue as follows:

• We describe the process of generating a large-scale real-world dataset to study the

feasibility of early detecting experiential pancreatic cancer cases from longitudinal

individual search activity (Section 6.2).

• We review the large set of characteristics that we extract from query timelines (Section

6.3.1).

• We present a simple methodology to track the temporal relationships and patterns in

the content of queries over time (Section 6.3.2).

• We summarize our prediction model to forecast with significant lead times that users

will later input experiential queries for pancreatic cancer (Section 6.3.3).
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• We explore the influence of different factors, such as the lead time or the presence of

specific symptoms in the search activity, on the predictive performance of our learned

models, including true positive rates when false positive rates are strictly controlled

(Section 6.4).

Controlling false positives is especially important to reduce unnecessary costs and concerns

given potential future applications such as providing early warnings and suggestions to

searchers about undertaking more formal screenings. Finally, we conclude and discuss the

implications of our work (Section 6.5). The material described in this chapter appears in

[Paparrizos et al., 2016b; Paparrizos et al., 2016a].

We now describe the dataset creation process.

6.2 Dataset Creation to Study Pancreatic Cancer Searchers

We first provide an overview of the dataset used, starting with a description of the query

logs (Section 6.2.1). We then discuss the creation of an ontology with symptoms commonly

experienced by people with pancreatic cancer (Section 6.2.2) and provide details on extract-

ing pancreatic cancer and symptom searchers (Section 6.2.3). We review the augmentation,

tagging, and filtering steps for our dataset (Section 6.2.4). Finally, we summarize the cre-

ation of query timelines for the positive cases (i.e., experiential diagnostic searchers who

also search for pancreatic cancer symptoms) and the negative cases (i.e., those who only

search for the symptoms) (Section 6.2.5). Since reliable labels cannot be determined for the

non-experiential pancreatic cancer searchers, we exclude them to create a cleaner dataset for

training and testing. We show later (see Section 6.4.6) that predictive performance is largely

unchanged if these searchers are included as negative examples during the application of

the model in a realistic scenario.



CHAPTER 6. DETECTING DEVASTATING DISEASES IN SEARCH LOGS 164

Type Name Example synonyms

Symptom

back pain pain in lower back, lowback pain
blood clot blood clots, thrombosis
dark or tarry stool dark poop, tarry feces
dark urine orange pee, brown urine
enlarged gall bladder swollen or inflamed gallbladder
floating stool floating stool, floaters
greasy stool greasy poop, oily feces
high blood sugar sudden diabetes
itchy skin skin itching, hands itchy
yellow skin or eyes jaundice, yellow eyes
light stool pale stool, white crap
loss of appetite poor appetite, not hungry
nausea or vomiting throwing up, nauseous
smelly stool stinky feces, smelly poop
sudden weight loss unexplained weight loss
taste changes changes in taste, dysgeusia
loose stool loose feces, loose stool, diarrhea
constipation constipated, backed up
indigestion acid reflux, heartburn
abdominal swelling or pressure swollen stomach
abdominal pain belly pain, stomach ache

Risk factor

alcoholism heavy drinking, alcoholic
hepatitis hep b, hep c
pancreatitis –
ulcers ulcer
obesity obese, very fat, extremely fat
smoking smoker, cigarette, cigar
chills or fever chills, fever
multiple endocrine neoplasia men1
nonpolyposis colorectal cancer lynch syndrome, hnpcc
von hippel-lindau syndrome hippel-lindau syndrome
intestinal polyposis syndrome peutz-jeghers syndrome
mole melanoma syndrome fammm, b-k mole syndrome

Table 6.1: Ontology with symptoms, risk factors, and examples of associated synonyms for
pancreatic cancer.

6.2.1 Anonymized Web Search Engine Logs

Search engines track various characteristics during their interaction with users so as to better

capture information needs, improve their responses, and personalize the content. Every such

interaction corresponds to a log entry that includes a unique, anonymized user identifier

based on a web browser cookie. This enables the extraction of the search history comprising

queries and clicks from an identifier for up to 18 months. Note that the identifier may

comprise the search activity of multiple users on shared machines and does not consolidate

activity from a user across multiple machines. We use the logs of a randomly-selected subset

of Bing search engine users in the English-speaking United States locale from October 2013

to May 2015 inclusive.



CHAPTER 6. DETECTING DEVASTATING DISEASES IN SEARCH LOGS 165

6.2.2 Ontology of Symptoms and Risk Factors

Warning signs and symptoms for pancreatic cancer usually include generic, subtle signs

and symptoms, such as abdominal and back pain, loss of appetite, and unexplained weight

loss. We performed an extensive review of possible signs, symptoms, and risk factors asso-

ciated with pancreatic cancer and developed an ontology with 21 categories of symptoms.

This manually-curated ontology consists of two levels. The first level includes the names

of the symptoms and the second level includes multiple names, synonyms, and expressions

with which the corresponding symptom in the first level may appear in our data. We per-

formed multiple iterations of refinements of this ontology to remove noise and to minimize

erroneous query matches. Table 6.1 presents the 21 symptom categories with some rep-

resentative examples of associated query expressions. Also shown are 12 risk factors and

associated synonyms, derived from the literature (e.g., [Lowenfels and Maisonneuve, 2006]),

describing attributes, characteristics, or exposures that may increase the likelihood of pan-

creatic cancer. The symptoms and the risk factors are featurized in predictive models, and

they are also used in policies to determine when predictive models should be applied (see

Section 6.4.5).

6.2.3 Extraction of Pancreatic Cancer Searchers and Symptom Searchers

In order to identify positive and negative cases for the generation of our learned model, we

built a dataset comprising two groups of users (Figure 6.1). The pancreatic cancer searchers

group, denoted as A in the figure, includes all searchers with at least one query explicitly on

pancreatic cancer (i.e., a query matches this expression [(‘pancreas’ OR ‘pancreatic’) AND

‘cancer’]). The symptom searchers group, denoted as C, includes all users with at least one

query related to symptoms linked to pancreatic cancer, as captured by the symptoms and

synonyms described in Section 6.2.2.

Having unique identifiers for each user in the union of A and C (i.e., A∪C) permits

the extraction of the full query histories of 9.2 million searchers. We first sought to remove

searchers who are likely healthcare professionals (HCPs). To do this, we employed a pro-
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prietary Bing classifier that identifies health-related queries to remove users from the study

for whom 20% or more of queries are health related. This threshold was based on a prior

analysis of identifying health professionals in search logs [White et al., 2014].

6.2.4 Dataset Augmentation, Tagging, and Filtering Steps

Age and gender are important factors associated with developing pancreatic cancer [Lowen-

fels and Maisonneuve, 2006; Michaud, 2004]. As such, we augmented the dataset with

demographic information from proprietary search engine classifiers that estimate age (dis-

cretized as < 18, 18–24, 25–34, 35–50, or 50–85) and the gender for each user. The classifiers

are trained on data where ground truth of demographic details are provided explicitly by

users. The predictions are based on signals derived from searchers’ long-term search activ-

ity, including their search queries and web domains of their clicked results. Since pancreatic

cancer incidence rates vary by geographic location, we also annotated searchers with the

U.S. state from which they searched most (based on reverse internet provider (IP) lookup

data).

Beyond the demographic information, we are also interested in the subject matter of the

queries and results that were visited over searchers’ timelines. We augmented each query

and corresponding clicked websites with their estimated Open Directory Project (ODP,

dmoz.org) category. We used a text-based classifier, similar to [Bennett et al., 2010], that

uses logistic regression to predict the ODP categories. When optimized for the score in each

category, this classifier has a micro-averaged F-measure score of 0.60. For queries, the ODP

category is that of the top-ranked search result. The remaining users after the augmentation

and filtering steps total 7.4 million, from which 479,787 are pancreatic cancer searchers.

6.2.5 Extraction of Positive and Negative Pancreatic Cancer Cases

We create query timelines for experiential pancreatic cancer searchers and experiential

symptom searchers, which we then featurize for the early detection task. Figure 6.2 sum-

marizes the strategies for identifying positives and negatives. To avoid including users with
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Search engine activity data over time

Positive cases:

Negative cases:

Symptom lookup period

Search engine activity data over time

Symptom lookup period

Exp0

No pancreatic cancer searching
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diagnosis

S0
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α

Figure 6.2: Schematic illustration of the query timelines used in the selection of positive
and negative cases. S0 refers to the first symptom query and Exp0 is the first experiential
diagnostic query. α is the duration of the symptom lookup period, which was approximately
equal in the aggregate for the positives and negatives. β is the duration of the period of
diagnosis, set to one week in this study.

very short histories, we filter out all users with fewer than five search sessions1 spanning five

different days. This reduced the population to 6.4 million users, with a mean total duration

(time from first to last query for a user) of 210.32 days, standard deviation (SD) of 182.93

days, and interquartile range of 120 days.

Positive Cases: To identify experiential pancreatic cancer users, we created a set of first-

person diagnostic queries for pancreatic cancer (denoted Exp0). Some examples of such

diagnostic queries are [just diagnosed with pancreatic cancer ], [why did i get cancer in pan-

creas], and [i was told i have pancreatic cancer what to expect].

From the set of 479,787 pancreatic cancer searchers, 3,203 match the pattern of diag-

nostic queries. In order to consider them as experiential users, we require them to have

searched at least for one symptom prior to the diagnosis query. This step generates a set of

1,072 query timelines of experiential searchers that contain periods of symptom lookup fol-

lowed by the diagnostic query. The symptom lookup period starts when the first symptom

is detected as matching terms represented in the symptom ontology. For positive cases, the

symptom lookup period completes at least one week before diagnosis (i.e., we consider the

week before the diagnostic query as the period of diagnosis in real life and do not count

1Session is a query sequence with at most 30 minutes between queries [White and Drucker, 2007].
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queries in that time since they may be polluted with ground truth signals). For reliability,

especially given the need to compute Temporal features (Section 6.3.1), the minimum time

period for which our features are computed is four weeks.

Negative Cases: To generate the negative set, we sample from the users who searched

for pancreatic cancer symptoms but did not search for pancreatic cancer anywhere in their

timeline (i.e., C \A), either before or after the symptom lookup period. Performing this

additional check on data from outside the lookup period is required to increase the likeli-

hood that the negative cases are indeed negative. Users who searched for pancreatic cancer

and its symptoms, but did not issue an experiential query (the gray subset in Figure 6.1

representing (A∩C)\B), were excluded since a label could not be reliably determined. In

Section 6.4.6 we describe an additional experiment where pancreatic cancer searchers were

included during model testing.

We were concerned that rudimentary behavioral differences that may reflect artifacts

in the data could invalidate the learning task. For example, if our experiential users were

just more active generally, then a feature that computed the total number of queries would

have strong predictive value, yet would be uninteresting scientifically. We sought to address

this by downsampling the negative cases to attain a similar distribution of symptom lookup

periods in terms of the temporal duration and query volume as observed for the positive

cases.2 We did this by selecting users with a symptom lookup period duration within

three standard deviations of the mean of the positive cases. This reduces the number of

negative cases to 3,025,046. Table 6.2 presents the summary statistics on the symptom

lookup periods in terms of the number of days and the number of queries in the two

datasets. The table shows that the distributions for positive and negative cases (in terms

of number of days and number of queries) are similar. The distributions are statistically

indistinguishable using two-sample Kolmogorov-Smirnov tests for temporal duration (D =

0.005; p = 0.7017) and number of queries (D = 0.003; p = 0.7681), even though the latter

2We could also have addressed this by making all features relative percentages. Sampling provided more flexibility
in feature construction. As an additional check, we included features such as the number of queries in the symptom
lookup period; those were found to carry little evidential weight in the learned model.
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Class Duration (days) Total # queries N
M SD M SD

Positives 109.34 49.66 380.66 150.83 1,072
Negatives 108.04 48.35 378.09 151.01 3,025,046

Table 6.2: Summary statistics, namely, mean (M ), standard deviation (SD), and number
of cases (N), of durations and numbers of queries in positive and negative datasets.

was not a filtering criterion. We note that query timelines are not aligned: the absolute

point in time where people issue the experiential diagnostic query, and the accompanying

symptom lookup period can differ between searchers.

6.3 Early Detection of Experiential Searchers

Our objective is to develop a methodology to extract characteristics from web search engine

query logs and to analyze the evolution of these static characteristics over time, as we did

in Chapter 5. To achieve that goal, we first describe the large set of characteristics that

our system extracts from the query timelines (Section 6.3.1). Then, we present a variety of

principled statistical measures capable of capturing patterns in time-varying characteristics

(Section 6.3.2). Then, we describe the problem of focus and review our prediction model

(Section 6.3.3)

6.3.1 Feature Extraction for Query Timelines

We group our static features into four major different categories: (i) demographic informa-

tion about the user; (ii) characteristics about user sessions, query classes, and URL classes;

(iii) characteristics about symptoms; and (iv) risk factors. Each category may contain mul-

tiple subcategories, as we explain next. We describe the temporal features in Section 6.3.2.

Table 6.3 summarizes the features.

Category Name Description

Demographic

AgeIs_X Age prediction based on queries and clicks
AgeClassProbability_X Probability of classifier for this age class
GenderIs_X Gender prediction based on queries and clicks
GenderProbability_X Probability of classifier for this gender class
LocationIs_X U.S. state from which the user most actively searches

SearchHistory

# Queries (Q) Number of queries issued by the user
# DistinctQ Number of distinct queries issued by the user
# DistinctSessions (S) Number of sessions
# Clicks (C) Number of times a query led to a click
# QWithCategories Number of queries for which we have ODP category
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% QInCategories Percent of queries for which we have ODP categories
RatioOfCPerQ Ratio of clicks to queries

QueryTopic

QCategoryIs_X User has queries in ODP category
# QInCategory_X Number of queries in ODP category
% QInCategory_X Percent of queries in ODP category w.r.t all queries
% ODPQInCategory_X Percent of ODP queries w.r.t all ODP queries
# QInCategoryW_X Weighted version with classifier’s probability as weight
% QInCategoryW_X Weighted version with classifier’s probability as weight
% ODPQInCategoryW_X Weighted version with classifier’s probability as weight
# SInCategory_X Number of sessions in ODP category
% SInCategory_X Percent of sessions in ODP category
AvgTimeQCategory_X Average time span between ODP queries
StDevTimeQCategory_X Standard deviation of that time span
AvgTimeSequentialQ_X Average number of sequential queries in ODP category
StDevTimeSequentialQ_X Standard deviation of that number of queries
# Qfrom0to6InODP_X Number of ODP queries during early morning
# Qfrom6to12InODP_X Number of ODP queries during late morning
# Qfrom12to18InODP_X Number of ODP queries during evening
# Qfrom18to24InODP_X Number of ODP queries during afternoon/night

URLTopic

CInURLCategory_X User has clicked in URL of that category
# CInURLCategory_X Number of times user clicked in URL of that category
RatioOfQinURLODP_X Ratio of clicked urls in ODP w.r.t. number of queries
% CInURLODP_X % of clicked urls in ODP category w.r.t # of clicks
# CInURLODPW_X Weighted version with classifier’s probability as weight
RatioOfQInURLODPW_XWeighted version with classifier’s probability as weight
% CInURLODPW_X Weighted version with classifier’s probability as weight
# SInURLODP_X Number of sessions with clicks in that category
RatioOfSInURLODP_X Ratio of sessions with clicks in ODP w.r.t all sessions

QueryURLTopic

# QWithSymODP_X_Y Number of queries with symptom X in Y ODP
% QWithSymODP_X_Y Percent of queries with symptom X in Y ODP
# QSymLedToC_X_Y Number of queries with symptom X led to URL of Y
% CSymLedToC_X_Y Percent of queries with symptom X led to URL of Y
# QODPLedToC_X_Y Number of queries in query class X led to URL of Y
% CODPLedToC_X_Y Percent of queries in query class X led to URL of Y

SymptomGeneral

# SymptomQ Number of queries matching our symptoms
# DistinctSymptoms Number of distinct symptoms
# DistinctSymVariants Number of distinct variants of symptoms
% QForSymptoms Percent of queries matching symptoms
# QWithManySymptoms Number of queries matching multiple symptoms
% QWithManySymptoms Percent of queries matching multiple symptoms
% SWithSymptomQ Percent of sessions matching a symptom
% SWithManySymptomQ Percent of sessions matching multiple symptoms
AvgTimeSymptoms Average time span between queries matching symptoms
StDevTimeSymptoms Standard deviation of such time
AvgSymptomPerDay Average number of queries matching symptoms per day
StDevSymptomPerDay Standard deviation of such number
MaxSymptomPerDay Max of such number
% DaysWithSymptom Percent of queries matching symptoms per day

SymptomSpecific

HasSymptom_X User has query matching symptom category X
# QForSymptom_X Number of queries matching symptom category X
% QForSymptom_X Percent of queries matching symptom category X
# SForSymptom_X Number of sessions with queries in X symptom category
% SForSymptom_X Number of sessions with queries in X symptom category
AvgTimeSymptom_X Average time between queries matching that symptom
StDevTimeSymptom_X Standard deviation of that time
# Qfrom0to6InSym_X Number of X symptom-queries during early morning
# Qfrom6to12InSym_X Number of X symptom-queries during late morning
# Qfrom12to18InSym_X Number of X symptom-queries during during evening
# Qfrom18to24InSym_X Number of X symptom-queries during afternoon/night

Risk Factor
HasRiskFactor_X User has query matching that risk factor
# QForRF_X Number of queries matching that risk factor
% QForRF_X Percent of queries matching that risk factor
# DistinctRF Number of distinct risk factors

Temporal

SymptomSequence_X_Y If symptom X appeared before symptom Y
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SymptomSequence_Y_X If symptom Y appeared before symptom X
SlopeOfQInODP_X Slope of fitted functions in queries for X
CumSlopeQInODP_X Slope of fitted functions in cumulative queries for X

Table 6.3: Features used for early detection task, grouped by feature category.

Demographics: Cancer statistics from the U.S. National Cancer Institute3 show that pan-

creatic cancer is more common with increasing age, is slightly more common in men than

in women, and varies by geographic location. As such, we develop features related to the

demographics of the users. In particular, we use the estimated age bucket and gender (see

Section 6.2.4) along with the classifier’s probabilities as confidence values. The dominant

location (U.S. state) of a searcher is also included as a feature.

Search Characteristics: People express their information needs and preferences through

queries and click behavior (i.e., the website visits). We extract various features to capture

these search and retrieval activities. As we discussed previously, the queries, as well as the

visited websites, were tagged with their ODP category in an attempt to identify domains

of interest (see Section 6.2.4). A first set of features SearchHistory contains several generic

statistics, such as counts, ratios, and percentages, which are characteristics of the global

behavior of the user. For example, we compute the number of queries, sessions, and clicks,

as well as ratios of clicks per query for each user. Then, we compute a large number of

features with respect to the ODP categories of queries QueryTopic, clicked search results

URLTopic, and the combination QueryURLTopic. These include compute counts and per-

centage of queries and sessions in each ODP category, the average time until queries appear

in the same category, as well as the time of the day that queries appear in each category.

Similar features are also computed for each category of the visited websites (e.g., counts,

ratios, and percentages of visited websites that belong to each category). We additionally

compute features to characterize the user sessions, including features that capture the click

behavior of users associated with queries. For example, we compute counts and percentages

of all the combinations of query categories that led to visits in website categories.

Symptoms: The features described above attempt to capture generic characteristics from

3http://seer.cancer.gov/statfacts/html/pancreas.html
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user sessions. However, for the problem of interest, we seek to also leverage features from

queries containing terms captured in the symptom ontology for pancreatic cancer (Sec-

tion 6.2.2). The symptom features are divided into two classes: (i) SymptomGeneric and

(ii) SymptomSpecific. Generic symptom features contain counts and percentages for the

queries and sessions matching symptoms in our ontology, the average time between symp-

tom queries, as well as the average number of symptom queries that are issued daily. Specific

symptom features are generated per symptom category. For example, for each symptom,

we compute counts and percentages of appearance, the time between distinct symptoms,

and the time of day such symptom queries are issued. As with the user session features,

we combine symptoms to capture the click behavior and, hence, we compute counts and

percentages of each symptom query leading to a visit on a website belonging to particular

ODP categories.

Risk Factors: This class contains features related to the presence of terms representing

risk factors in the symptom lookup period. For each risk factor, we note its presence or

absence, and also the number of queries containing that risk factor and the fraction of all

queries from that user that these risk factor queries represents. Total number of distinct

risk factors in the symptom lookup period is also a feature.

6.3.2 Feature Aggregation and Temporal Pattern Extraction

All previous features produce aggregated statistics over the full time window under con-

sideration. We include a subset of the features we exploited in Chapter 5, to capture the

temporal variation of these statistics over misaligned query timelines with noise and missing

values. For every feature extracted in Section 6.3.1, we generate a time series with points

that represent aggregated values for intervals of the time window. For example, each feature

can be computed per month, per week, or per day, depending on the level of granularity

we seek to capture. Since the occurrence of specific features can be very sparse, we set the

time window to four weeks for temporal features. For features that are not percentages

or ratios, we also compute the cumulative time series. For each time series, we use the
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first coefficient of the linear least-square estimates to devise features that capture the trend

(i.e., increasing, decreasing, and unchanged) and the rate of change (i.e., slope). We omit

features capturing global characteristics (see Section 5.3.2) that in our preliminary analysis

did not provide additional benefit. Finally, we define domain-specific temporal features to

capture the sequence in which symptoms appear in query timelines.

6.3.3 Problem Description and Prediction Model

We address the problem of early detection of experiential searchers for pancreatic cancer

via anonymized web search engine logs. We cast this as a binary classification task, where

the model is trained on features extracted from search log query timelines of experiential

pancreatic cancer searchers and symptom-only searchers. We focus on maintaining very low

false-positive rates (i.e., 1 misprediction in 100,000 correctly identified cases) while keeping

high the imbalance ratio of positive and negative cases (i.e., one thousand positives vs.

millions of negative cases); these properties are important for potential future large-scale

real-world applications such as an alerting mechanism in search engines.

The prediction model uses the features outlined in the previous section, computed for

each searcher, to make predictions about the future occurrence of experiential diagnostic

searches in each searcher‘s query timeline. We use gradient boosted trees [Friedman, 2001],

which employ an ensemble of decision trees to construct a better learned model. Advantages

include the ability to capture non-linear relationships, model interpretability (e.g., a ranked

list of important features is generated), facility for rapid training and testing, and robustness

against noisy labels and missing values. We experimented with different learning algorithms,

but gradient boosted trees yielded superior accuracy.

6.4 Experimental Results

We now present the findings of our experiments. We report the overall performance in

Section 6.4.1 and the performance as we increase the lead time before the first experiential
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Weeks before TPR (as %) at FPRs ranging from 0.00001–0.1 AUROC
Exp0 0.00001 0.0001 0.001 0.01 0.1
1 week 7.122 10.386 20.772 36.202 71.810 0.9112
5 weeks 7.122 10.979 20.178 34.421 70.620 0.9047
9 weeks 7.122 10.683 18.991* 33.234* 70.023 0.8854*
13 weeks 7.122 9.792 17.804* 32.937* 67.359* 0.8700*
17 weeks 6.825 9.199* 17.209* 32.640** 64.688** 0.8539**
21 weeks 6.528* 9.199* 16.319** 32.345** 61.424*** 0.8315**

Table 6.4: Performance at four-week intervals for users where features can be computed
from Exp0 – 1 week to Exp0 – 21 weeks. Values averaged across the ten folds of cross-
validation. The significance of differences in AUROC and TPR using paired t-tests for each
week versus Exp0 – 1 indicated * p < 0.01, ** p < 0.001, and *** p < 0.0001. Weeks denote
lead time before Exp0 (β in Figure 6.2).

diagnostic query (Section 6.4.2). We then inspect the model to understand the contribu-

tions that each feature makes towards early detection (Section 6.4.3) and the performance of

different feature classes (Section 6.4.4). Then, we examine the effect on model performance

of conditioning on symptoms and risk factors (Section 6.4.5) and consider a realistic de-

ployment scenario (Section 6.4.6). Finally, we discuss limitations of our approach (Section

6.4.7). Throughout the experimental evaluation, we use the area under the receiver operat-

ing characteristic curve (AUROC) and recall (TPR, true positive rate) at fixed, extremely

low false positive rates (FPRs) as our primary evaluation metrics. Additionally, we apply

10-fold cross validation, stratified by user to evaluate the generalizability of the model when

applied to new users. Significance level is p < 0.05 unless otherwise stated.

6.4.1 Overall Performance of Prediction Model

The overall performance of the classifier in making predictions based on data up to the

beginning of the period of diagnosis (i.e., Exp0 – 1 week) in AUROC is 0.9003. Given that

low error rates would be vital in practice to avoid unnecessary patient alarm, we focus on

the true positive rate (fraction of all positives that are recalled by the model) at low false

positive rates (FPR). Focusing on FPR in the range 0.00001–0.01, the model is able to

recall 5–30% of the positive cases, depending on the specific FPR. We see this performance

as promising given the limited information (primarily search-related activity) available to

the model.
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Figure 6.3: Average partial ROC curves in the FPR range 0–0.01, for models learned using
data up to 21 weeks before the first experiential diagnostic query (error bars excluded for
clarity). Variance in FPR and TPR is minor.

6.4.2 Evaluation of Model with Different Lead Times

A key part of early detection is being able to predict the emergence of the disease well in

advance. To understand how the prediction performance changes as we move further back

in time before the first experiential diagnostic query, we selected the set of 337 positive

searchers and 945,394 negative searchers who were still observed in the logs many weeks prior

to the experiential diagnostic query. We report results from one week before the experiential

diagnostic query, all the way up to 21 weeks before the diagnostic query. To count as being

present at Exp0 – 21 weeks, a searcher needs to have symptom queries extending back at

least four weeks before that point (i.e., to Exp0 – 25 weeks, or approximately six months

before the first experiential diagnostic query).

We trained a model for these users in the same way as we did in Section 6.4.1. The

ratio between positive and negative searchers remains similar to that for all users (i.e.,

approximately 1:3000). Table 6.4 reports the TPR at different false positive rates for this

same set of users at different four-week increments, as well as the AUROC. The general

trend is that the performance drops fairly consistently as we increase the lead time, but
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Feature Weight Direction Class
NumOfDistinctSymptoms 1.0000 Positive SymptomGeneral
NumOfQueriesInHealthCategory 0.8253 Positive QueryTopic
NumOfDistinctSymptomsVariants 0.6899 Positive SymptomGeneral
AgeClassProbability_5085 0.6889 Positive Demographic
HasBackPain 0.6622 Negative SymptomSpecific
HasIndigestion 0.6432 Negative SymptomSpecific
HasIndigestionThenAbdominalPain 0.6349 Positive Temporal
SlopeNumOfDistinctSymptoms 0.6154 Positive Temporal
HasBackPainThenYellowSkinOrEyes 0.6004 Positive Temporal
AgeClassProbability_LT18 0.5869 Negative Demographic

Table 6.5: Top 10 features by evidential weight relative to the top feature. “Positive” or
“Negative” direction means that a feature correlates positively or negatively, respectively,
with the rise of experiential queries.

even 20 or so weeks before the first experiential diagnostic query the predictive performance

is still quite strong (AUROC=0.8315, TPR=6.528% at FPR=0.00001). Assuming that

pancreatic cancer progresses steadily from stage I to stage IV in just over one year (as has

been previously reported [Yu et al., 2015]), accurate predictions 20 weeks in advance of the

diagnostic period could lead to a sizable increase in the five-year survival rate (e.g., moving

the point of diagnosis from Stage III to Stage II could increase the survival rate from 3%

to 5–7% [American Cancer Society, 2014]).

Focusing on the FPR region from 0 to 0.01 (i.e., false positives occur fewer than 1

in 100 times) and visualizing that part of the ROC curve (Figure 6.3) we observe some

clear differences in the performance of the models in this important region. The average

normalized partial AUROC ranges from 0.292 (Exp0 – 1 week) to 0.231 (Exp0 – 21 weeks).

All differences in AUROC for Exp0 – 5 or more weeks versus Exp0 – 1 week are significant

(p < 0.01 using paired t-tests).

6.4.3 Contribution of Individual Features

In addition to understanding the overall performance, we are also interested in understand-

ing the features that are most important in the learned model for predicting the future is-

suance of experiential queries. Table 6.5 shows the top 10 features with the highest weight,

along with their weight relative to the top-ranked feature (NumOfDistinctSymptoms) and

the feature class. The direction is based on the correlation between the feature value and
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the labels in the training data, using Pearson biserial correlation or the phi coefficient,

depending on whether or not the feature data is binary. Table 6.5 shows that there is a

broad range of features. The number of distinct pancreatic cancer symptoms was the most

important feature. Temporal features representing changes over time and sequence order-

ing of symptom pairs are also important. Specifically, the trend and the slope of features

capturing the appearance of symptom searches often correlate positively with experiential

searchers in comparison to the trend and the slope of features capturing general purpose

web search activity. Similarly, features capturing the order in which symptom searches

appear often correlate positively with experiential searchers in comparison to features cap-

turing individual symptom searches. For example, individual symptom features related to

back pain and indigestion are important but have a negative influence on predicting future

experiential queries, likely because (i) there are many explanations for why these symptoms

appear in a query timeline, and (ii) they are positive for many negative cases (16.7% of

negatives search for back pain, 7.4% search for indigestion). Finally, age is also important,

and it is positively correlated if the searcher is older and is negatively correlated if they are

younger.

6.4.4 Contribution of Feature Categories

Beyond the individual features, we can also consider the accuracy of the models based on

feature classes. This can be particularly important when some classes of features are easy to

obtain in practice. For example, the demographic features may be available for all searchers

without the need to perform temporal modeling of query patterns. Table 6.6 presents the

AUROC for models trained on each of the feature classes. The findings show that the

Temporal class is particularly important, capturing the key role of temporal dynamics for

this prediction task. The model is still accurate solely with access to demographics and

basic features about general searching. However, performance improves substantially if

we consider the specifics of the symptoms searched (SymptomSpecific) or the topics of the

queries and results clicked (QueryTopic).
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Feature Class AUROC TPR (as a %) at
FPR=0.00001

Demographic 0.6565*** 0.280%***
RiskFactor 0.6988*** 0.653%**
SearchHistory 0.7202*** 1.399%**
QueryURLTopic 0.7597** 2.052%**
SymptomGeneral 0.7672** 2.146%**
URLTopic 0.7753** 2.332%*
SymptomSpecific 0.8176* 2.800%*
QueryTopic 0.8137* 2.892%*
Temporal 0.8391* 2.985%*
Overall 0.9003 4.851%

Table 6.6: Performance of individual feature classes (as AUROC and TPR at a FPR of
0.00001) averaged across the 10 experimental folds. The performance differences against
the Overall performance are statistically significant using paired t-tests at * p < 0.01, **
p < 0.001, and *** p < 0.0001.

6.4.5 Model Performance Conditioned on Symptoms and Risk Factors

We also considered the impact of the presence of symptoms and risk factors on the perfor-

mance of the model.

• Symptoms: We filtered the positive and negative cases to those where a symptom was

present in query timelines.

• Risk factors: These are risk factors corresponding to the presence of factors such as

pancreatitis, smoking, and obesity, as well as cancer syndromes such as hereditary

intestinal polyposis syndrome or familial atypical multiple mole melanoma syndrome

(i.e., genetic disorders that predispose individuals to develop pancreatic cancer), all of

which have been shown to lead to increased likelihood of developing pancreatic cancer

[Fuchs et al., 1996; Goldstein et al., 1995; Lowenfels et al., 1993; Talamini et al., 1999].

Recall that our cross-validation was stratified by user. During cross validation, we learned

a model on the users in the training folds and then for testing we limited to users with evi-

dence of the specific symptoms or risk factors in their search history prior to the experiential

diagnostic query. In each case the number of positives and negatives is less than the full

set.4 Table 6.7 presents statistics on the performance for each model where the number of

4An alternative would be to train a separate model for symptom or risk factor. An issue with doing that is there
are insufficient positive examples about each dataset with which to train a robust model.
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positive examples was at least 10 (to help ensure that AUROC calculations were meaning-

ful). The table also presents TPRs at different false positive rates, as well as the percentage

of positive or negative cases that have the symptom or risk factor searches. Finally, the last

three columns shows the estimated number of true positives (capture) and false positives

(cost) that would be observed, assuming a FPR of 0.00001, and the associated capture-cost

ratio. Ideal targets for rates of capture versus cost in a deployed service can be derived

via a decision analysis that considers the net expected value of the early detection and the

expected costs of unnecessary anxiety. Such an optimization would leverage a careful char-

acterization of the value of early intervention and details of designs of methods for engaging

people.

Table 6.7 shows that focusing on users who search for risk factors such as smoking,

hepatitis, and obesity leads to better overall performance. There were fewer than ten users

searching for each of the cancer syndromes (e.g., hereditary nonpolyposis colorectal cancer)

and, hence, they were excluded from Table 6.7. Focusing on the percentage of positives and

negatives that contain each of the symptoms or risk factors, we observe that there are some

that are much more likely to occur in positives (e.g., pancreatitis and smoking are 5.9 and

3.6 times as likely, respectively). Focusing on the utility, we find that if we set the FPR

to 0.00001, overall we would find 52 positives in the union of positives and negatives at

the expense of 30 negatives, who would be altered mistakenly. There are some symptoms

and risk factors for which the capture-cost is more favorable. For example, in the case of

alcoholism or obesity, we would find 20–30 times as many TPs as FPs. There are others

symptoms such as nausea or vomiting, or chills or fever, where the costs in mistakenly

alerting users equal or outweigh the benefits. Presence of symptoms or risk factors could

help decide whether to apply early detection models for a searcher.
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Symptom or Risk Factor TPR at FPRs ranging from 0.00001–0.1 AUROC # pos (%) # neg (%) FPR = 0.00001
0.00001 0.0001 0.001 0.01 0.1 Capture Cost Capture/Cost

Dark or tarry stool (S) 7.692 7.692 23.077 38.462 46.154 0.7173*** 13 (1.2%) 58,597 (1.9%) 1 0.5860 1.7066
Abdominal swelling (S) 4.167 8.333 16.667 20.833 45.833 0.7735*** 24 (2.2%) 45083 (1.5%) 1 0.4508 2.2183
Ulcers (RF) 0.000 0.000 0.000 7.895 50.000 0.7894*** 38 (3.5%) 16,081 (0.5%) 0 0.1608 0.0000
Dark urine (S) 0.000 5.556 16.667 27.778 50.000 0.8129** 18 (1.7%) 51,236 (1.7%) 0 0.5124 0.0000
Pancreatitis (RF) 6.061 9.091 12.121 24.242 54.546 0.8220** 33 (3.1%) 34,184 (1.1%) 2 0.3418 5.8514
Abdominal pain (S) 5.385 10.000 16.923 32.308 60.000 0.8343** 130 (12.1%) 311,266 (10.3%) 7 3.1127 2.2489
Enlarged gallbladder (S) 0.885 2.655 9.735 25.664 53.982 0.8358** 113 (10.5%) 98,454 (3.3%) 1 0.9845 1.0157
Constipation (S) 3.529 7.059 9.412 22.353 57.647 0.8469** 85 (7.9%) 317,300 (10.5%) 3 3.1730 0.9455
Smoking (RF) 3.846 3.846 7.692 15.385 53.846 0.8585 26 (2.4%) 27,817 (0.9%) 1 0.2782 3.5945
Blood clot (S) 4.494 10.112 14.607 31.461 61.798 0.8589 89 (8.3%) 351,385 (11.6%) 4 3.5139 1.1383
High blood sugar (S) 6.135 8.896 16.564 31.595 60.429 0.8611 326 (30.4%) 429,543 (14.2%) 20 4.2954 4.6561
Nausea or vomiting (S) 3.200 8.800 17.600 30.400 63.200 0.8706 125 (11.7%) 639,502 (21.1%) 4 6.3950 0.6255
Chills or fever (RF) 3.636 7.273 20.909 30.909 65.455 0.8727 110 (10.3%) 357,536 (11.8%) 4 3.5754 1.1188
Loose stool (S) 4.615 7.692 18.462 35.385 72.308 0.8756 65 (6%) 74,720 (2.5%) 3 0.7472 4.0150
Indigestion (S) 7.547 12.264 20.755 38.679 68.868 0.8932 106 (9.9%) 504,462 (16.7%) 8 5.0446 1.5859
Itchy skin (S) 18.750 25.000 25.000 25.000 75.000 0.8982 16 (1.5%) 79,448 (2.6%) 3 0.7945 3.7760
Back pain (S) 7.801 14.184 19.858 34.752 69.504 0.9047 141 (13.2%) 223,586 (7.4%) 11 2.2359 4.9197
Yellow skin or eyes (S) 2.174 5.439 19.565 38.044 73.913 0.9217 92 (8.6%) 85,805 (2.8%) 2 0.8581 2.3307
Hepatitis (RF) 7.692 10.256 20.513 38.462 71.795 0.9275 39 (3.6%) 25,158 (0.8%) 3 0.2516 11.9237
Alcoholism (RF) 12.500 16.667 27.083 41.667 89.583 0.9494** 48 (4.5%) 32,333 (1.1%) 6 0.3233 18.5586
Obesity (RF) 20.690 20.690 37.931 62.069 82.7590 0.9572** 29 (2.7%) 22,153 (0.7%) 6 0.2215 27.0880
Overall 4.851 8.302 17.258 36.474 72.015 0.9003 1,072 (100%) 3,025,046 (100%) 52 30.2505 1.7190

Table 6.7: Performance of the models conditioned on a variety of symptom (S) and risk factors (RF). Values below the dashed
line have a higher AUROC than Overall. Capture represents the number of TP cases in the cohort of positives ∪ negatives at
FPR=0.00001. Cost is computed as the target FPR (.00001) multiplied by the size of the negative set in each subgroup. Since
this exact FPR may not be attainable in each subgroup, cost may not be an integer. A capture-cost ratio of > 1.0 means that
more people would benefit from an alert than would be mistakenly alerted. Statistically significant differences with Overall model
(DeLong’s test [DeLong et al., 1988]) are marked ** p < 0.001 and *** p < 0.0001 (where α following a Bonferroni correction is
0.002).
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6.4.6 Deploying Learned Model in Practice

Up to now, our model considers experiential diagnostic users as positives and symptom-

only users as negatives. This is a clean dataset for algorithm training and testing but it

ignores the symptom searchers who issue non-experiential pancreatic cancer searches (gray

region in Figure 6.1). These users may have been diagnosed or may simply be exploring.

Regardless, they should be considered in practice.

We perform an additional experiment on a separate set of symptom searchers that

included non-experiential pancreatic cancer searchers as negatives. We trained a model

on all data described thus far and applied it to identify (i) experiential and (ii) expe-

riential+treatment users in a new held out dataset in advance of their first experiential

diagnostic query. We generated the test set from logs of a separate randomly selected sub-

set of Bing users, over an 18-month period from August 2014 to January 2016 inclusive.

There was no overlap in users with the set used for training. We identified positive cases

as earlier and expanded the definition of negatives to include pancreatic cancer searchers.

This resulted in 2.9 million negatives, including 48,221 non-experiential pancreatic cancer

searchers, and 945 experiential searchers with preceding symptom searches. To help tar-

get the identification of cases where experiential queries are issued, we created a subset

of the positives who issued treatment-related queries, such as whipple procedure, a surgi-

cal operation to remove tumours from pancreas, and cluorouracil (5-FU), a medication to

treat cancer, following Exp0; in total, 494 users (52%) met this requirement. The symptom

lookup durations for positives and negatives were similar to Section 6.2.5. We randomly

split the test data into ten equally-sized subsets for significance testing. Table 6.8 reports

the predictive performance at different lead times.

Table 6.8 shows that the performance of the model remains strong on this held-out

set and is comparable to that reported in the earlier sections. The performance decreases

with increased lead time as noted previously (see Table 6.4). Interestingly, the performance

in identifying the subset of experiential diagnostic users who subsequently searched for

treatments is higher than for the experiential-only set. This is promising confirmatory
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Weeks before Experiential Experiential+Treatment
Exp0 AUROC TPR (%) AUROC TPR (%)
1 week 0.9012 8.677 0.9225 12.145
5 weeks 0.8892 8.571 0.9089* 11.943
9 weeks 0.8754** 8.278* 0.8902** 11.343*
13 weeks 0.8611** 8.018** 0.8795** 10.738**
17 weeks 0.8456*** 7.666** 0.8683*** 10.400***
21 weeks 0.8330*** 7.438*** 0.8508*** 9.645***

Table 6.8: Average AUROC and average TPR (as %) at FPR=0.00001 for identifying
experiential users and experiential+treatment users from held out dataset. Differences
in AUROC and TPR between Exp0 – 1 week and other weeks noted (*** p < 0.001, **
p < 0.001, and * p < 0.01).

evidence as these users are assumed to have experienced a cancer diagnosis, per definitions

of experiential queries [Paul et al., 2014].5

6.4.7 Limitations and Discussion

Despite the promising findings, we note several important limitations. First, we lack explicit

ground truth about diagnoses per the anonymity of our logs. We rely on models of self-

reporting in queries. We have found that streams of queries following the experiential queries

can provide confirmatory evidence of pancreatic cancer diagnoses. Indeed, in the weeks

immediately following the experiential diagnostic query, over 40% of searchers queried for

treatment options, with many using sophisticated terminology (e.g., Whipple procedure,

pancreaticoduodenectomy, neoadjuvant therapy) and over 20% of searchers searched for

pancreatic cancer medications (e.g., gemcitabine, 5-fu). In contrast, only 0.5% and 0.02%

of searchers in our negative set searched for treatments and medications, respectively, at

any point in their query timeline.

We need to work with diagnosed patients to understand (i) the relationship between ex-

periential searching and diagnosis; and (ii) the model performance with the use of traditional

data as ground truth about diagnoses (e.g., medical records). We also need to understand

the role of factors such as race [Coughlin et al., 2000], family history [Lynch et al., 1996],

5For completeness, we also trained a model on all data from earlier in the chapter, including the non-experiential
pancreatic cancer searchers as negative cases, and tested it on this held-out set. The performance is around 5% lower
than reported in Table 7, for both AUROC and TPR, across all weeks. Including the non-experiential pancreatic
cancer searchers may add noise to model training.
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medical histories [Lowenfels et al., 1993], diabetes [Everhart and Wright, 1995], and other

factors (e.g., smoking [Fuchs et al., 1996]). Some of these can be crudely estimated from

geographic and census data (race), whereas others (family and medical histories) are best

sought from searchers directly.

To reflect anticipated performance in a natural setting, we focused on our imbalanced

dataset. We re-ran the analysis with a balanced set, with highly similar results. Finally,

we note that this is a retrospective analysis for model training and testing, and we need

to consider its representativeness for real-time screening, e.g., identifying negative cases in

the retrospective study relies on symptom lookup durations. Potential additional analyses

include explorations of predicting on fixed dates versus at the end of the observation period.

6.5 Conclusions

In this chapter, we explored the promise of harnessing temporal patterns in behavioral

signals extracted from web search engine logs for early detection of devastating diseases.

Specifically, together with collaborators from Microsoft Research, we leveraged billions of

queries from the Bing search engine and studied the feasibility of doing early detection of the

presence of pancreatic cancer in experiential user queries. We summarize the contributions

of this chapter as follows: (i) we introduced the early detection of diseases as a promising new

application of search log mining and machine learning that scales to millions of searchers; (ii)

we described the process of generating a large-scale real-world dataset to study the feasibility

of early detecting experiential pancreatic cancer cases from longitudinal individual search

activity (Section 6.2); (iii) we reviewed the large set of characteristics that we extract

from query timelines (Section 6.3.1); (iv) we presented a simple methodology to track the

temporal relationships and patterns in the content of queries over time (Section 6.3.2); (v)

we summarized our prediction model to forecast with significant lead times that users will

later input experiential queries for pancreatic cancer (Section 6.3.3); and (vi) we explored

the influence of different factors, such as the lead time or the presence of specific symptoms
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in the search activity, on the predictive performance of our learned models, including true

positive rates when false positive rates are strictly controlled (Section 6.4).

Our study provides insights on the feasibility of learning from search engine logs to

predict future issuance of experiential queries about pancreatic cancer at a low error rate.

The success of these methods has implications for online methods that would provide passive

screening of searchers, to offer early warning about potential signs of pancreatic cancer and

other devastating diseases. Our evaluation suggests that the combination of static features

extracted from query timelines with our temporal features yielded the greatest impact than

any other feature category considered in our analysis. Additionally, our analysis revealed a

number of important domain-specific findings. Specifically, we discovered that conditioning

on different symptoms and risk factors can enhance predictive power. We found capture-cost

tradeoffs associated with different symptoms and risk factors in terms of the total number

of truly positive cases identified versus the number of searchers who would be mistakenly

alerted. We characterized model performance as we increase lead time and we found that

we can attain a TPR in region of 5–30%, while controlling the FPR to 0.00001–0.01 months

before a diagnostic query is observed. Looking forward, we seek to understand the costs

and clinical significance of these methods, including how they might offer early warning of

devastating disease onset to enhance outcomes (e.g., quality of life).
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Chapter 7

Related Work

In Chapter 2, we provided a thorough overview of data mining approaches for time-series

analysis and presented necessary related work. This chapter now reviews additional liter-

ature that is relevant to each chapter of this dissertation. Specifically, Section 7.1 outlines

related work on time-series clustering, the problem that we addressed in Chapter 3. Sec-

tion 7.2 summarizes related work on unsupervised feature learning for time series, the

problem that we addressed in Chapter 4. Section 7.3 explores related work on methods

that measure and predict impact in the scientific literature, which is the problem that we

addressed in Chapter 5. Finally, Section 7.4 covers related research on large-scale analyses

of web search behavior and on methods for early detection of diseases, with emphasis on

pancreatic cancer, which is the problem that we addressed in Chapter 6.

7.1 Efficient and Accurate Time-Series Clustering

Chapter 3 focused on efficient, accurate, and domain-independent time-series clustering.

Section 3.2 provided an in-depth discussion of the state of the art for time-series clustering,

which we will not repeat for brevity. As argued throughout the chapter, we focused on shape-

based clustering of time series. Beyond shape-based clustering algorithms, statistical-based

approaches use measures that summarize characteristics [Wang et al., 2006], coefficients of
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models [Kalpakis et al., 2001], or portions of time series (i.e., shapelets) [Zakaria et al., 2012]

as descriptive features to cluster time series. Unfortunately, statistical-based approaches

frequently require the non-trivial tuning of multiple parameters, which often leads to ad-

hoc decisions, or their effectiveness has been established only for isolated domains and not

in a domain-independent manner. Instead, shape-based approaches are general and leverage

the vast literature on distance measures. In Section 3.6.6, we showed that both k-Shape

and k-AVG+ED significantly outperform the U-Shapelets method [Zakaria et al., 2012].

The best performing shape-based approaches from the literature are partitional methods

combined with scale- and shift-invariant distance measures. Among partitional methods,

k-medoids [Kaufman and Rousseeuw, 2009] is the most popular method as it enables the

easy adoption of any shape-based distance measure [Ding et al., 2008; Wang et al., 2013].

However, k-medoids requires the computation of the full dissimilarity matrix among all time

series, which makes it particularly slow and unable to scale. Recent alternative approaches

[Gupta et al., 1996; Meesrikamolkul et al., 2012; Niennattrakul and Ratanamahatana, 2009;

Petitjean et al., 2011; Yang and Leskovec, 2011] have focused on k-means [MacQueen, 1967],

which is scalable but requires the modification of the centroid computation method when

the distance measure is altered, in order to support the same properties (e.g., scaling, trans-

lation, and shifting). Because DTW is the most prominent shape-based distance measure

[Ding et al., 2008; Wang et al., 2013], the majority of the k-means approaches have proposed

new centroid computation methods to be used in conjunction with DTW [Gupta et al., 1996;

Meesrikamolkul et al., 2012; Niennattrakul and Ratanamahatana, 2009; Petitjean et al.,

2011]. k-DBA has been shown to be the most robust of these approaches [Petitjean et al.,

2011]. Another approach worth mentioning is KSC [Yang and Leskovec, 2011], which focuses

on a different shape-based distance measure that offers simultaneously pairwise scaling and

shifting of time series. Unfortunately, the effectiveness of such pairwise scaling and shift-

ing, and, hence, KSC, has not been established beyond a limited number of datasets. In

Sections 3.6.3 and 3.6.4, we evaluated k-Shape against shape-based approaches, including

combinations of k-means and k-medoids with the most competitive distance measures, as
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well as k-DBA and KSC. Apart from shape-based approaches, we also compared k-Shape

against hierarchical and spectral methods (see Section 3.6.4), density-based methods (see

Section 3.6.5), and shapelet-based methods (see Section 3.6.6).

For completeness, we note that [Golay et al., 1998] used the arithmetic mean property

for centroid computation and cross-correlation in distance measures with parameters to

regulate the fuzziness of fuzzy clustering of fMRI data. (In Section 3.6, we showed that

k-AVG+SBD is not competitive for our non-fuzzy setting.) [Goutte et al., 1999] used

cross-correlation to transform fMRI data into features for clustering. [Baragona, 2000]

evaluated several weighting schemes of cross-correlation along with a genetic algorithm to

avoid inappropriate initialization for the k-min clustering criterion [Sahni and Gonzalez,

1976]. [Hőppner and Klawonn, 2009] proposed a fuzzy c-means [Bezdek, 2013] clustering

method that uses a weighting scheme to penalize alignment of time series in larger lags

when cross-correlation is used, a weighted arithmetic mean for centroid computation, and

a mechanism to handle outliers given a user-defined threshold. Finally, cross-correlation

was used to speed up subsequence matching [Mueen et al., 2014] and the computation

of shapelets [Mueen et al., 2011], as well as for stream mining, pattern extraction, and

time-series monitoring [Papadimitriou et al., 2006; Sakurai et al., 2005a; Wu et al., 2010;

Zhu and Shasha, 2002].

7.2 Efficient Time-Series Representation Learning

Chapter 4 focused on efficient feature representation learning for time series. Section 4.2

provided an in-depth discussion of the state of the art for time-series dimensionality re-

duction and representation methods, kernel methods, and approximation mechanisms to

accelerate kernel methods. As argued throughout this chapter, we focused on and reviewed

unsupervised approaches to learn low-dimensional feature representations. Beyond these

approaches, traditional methods assume a model, which is often expressed in the form of

analytical equations with parameters, to describe time series and use the estimated parame-
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ters of such model as features in time-series mining tasks [Längkvist et al., 2014]. There is a

plethora of model-based approaches in the literature [Hyndman and Athanasopoulos, 2014;

Box et al., 2015; Fulcher, 2017] that rely on different models to serve different application

needs. The most prominent approaches favor models based on Hidden Markov Models [Ra-

biner and Juang, 1986], Gaussian Process models [Brahim-Belhouari and Bermak, 2004],

autoregressive models [Lütkepohl, 2005], such as autoregressive integrated moving aver-

age (ARIMA) models and generalized autoregressive conditional heteroscedastic (GARCH)

models, exponential smoothing models [Gardner, 2006], and models from Linear Dynamic

Systems [Luenberger, 1979]. Unfortunately, unrealistic assumptions of such models, com-

bined with their limited power to model highly complex, noisy, and high-dimensional time

series with analytical equations, impact the effectiveness of model-based approaches as stan-

dalone feature extraction methods for real-world problems [Längkvist et al., 2014].

As a consequence, there have been significant efforts in the time-series literature to ex-

tract generic features to represent time series using combinations of statistical measures

that summarize different time-series properties, including their distribution, correlation

structure, stationarity, entropy, and fitting to a range of different time-series models. For

example, initial efforts focused on a small number of statistical measures to extract fea-

tures from time series for subsequent analysis [Nanopoulos et al., 2001; Wang et al., 2006;

Deng et al., 2013]. Recent notable efforts collected more than 1,000 conceptually different

methods to extract more than 9,000 features [Fulcher et al., 2013; Fulcher and Jones, 2014]

proposed across scientific disciplines, which indicates the difficulty to learn robust feature

representations for time series. Despite the effectiveness of such methods for classification

and forecasting tasks where the supervised selection of features reduces the dimensionality

of feature vectors and increases accuracy, these approaches are not competitive for unsu-

pervised tasks.

Similarly, many time-series classification methods involve operations for feature extrac-

tion. For example, dictionary-based classifiers use a sliding window to first extract subse-

quences from time series and, then, to map such subsequences into a set of patterns with
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the goal to transform time series into distributions of patterns [Schäfer, 2016; Kate, 2016;

Lin et al., 2012]. Shapelet-based classifiers extract subsequences from time series that are

discriminatory of their class membership [Grabocka et al., 2014; Hills et al., 2014]. Finally,

interval-based classifiers extract features from intervals of time series [Baydogan et al., 2013;

Deng et al., 2013]. As before, such methods select features in a supervised manner to im-

prove classification accuracy [Bagnall et al., 2017]. Unfortunately, such methods are not

competitive for unsupervised settings, as we have shown for clustering methods relying in

unsupervised selection of shapelets in Chapter 3.

Alternative approaches to learn feature representations in an unsupervised manner rely

on neural networks [Zhang et al., 1998] and deep learning methods [Bengio et al., 2007b;

Bengio et al., 2007a; Bengio et al., 2012]. An advantage of these methods in comparison

to our approach is that they can learn multiple layers of feature representations to facil-

itate the modeling of complex structures in time series. For example, Restricted Boltz-

mann Machines (RBM) [Hinton et al., 2006; Hinton and Salakhutdinov, 2006] learn a

weight matrix between visible observations and layers of hidden units. To model time

series, Temporal RBM [Sutskever and Hinton, 2007] follow a methodology similar to the

autoregressive models discussed above and connect current hidden units with previously

visible units. Auto-encoder methods learn weight matrices between the visible observa-

tions, the hidden units, and the reconstructions of visible units [Bengio et al., 2007a;

Bengio et al., 2009]. Recurrent neural network (RNN) [Hüsken and Stagge, 2003] model

the time dependencies by connecting the hidden layers of each visible observation. Finally,

convolutional RBM (convRBM) [Lee et al., 2009a; Lee et al., 2009b] and auto-encoders

(convAE) [Masci et al., 2011] model time series by dividing the input visible observations

into segments that are only partially connected to hidden units. (We refer the reader to

[Längkvist et al., 2014] for a thorough review of neural networks and deep learning ap-

proaches for time series.) Recent efforts relying on deep learning methods [Cui et al., 2016;

Wang et al., 2017; Fiterau et al., 2017] show competitive performance in terms of classifi-

cation accuracy to state-of-the-art time-series classifiers [Bagnall et al., 2017] but without
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substantial improvements in terms of efficiency. As before, such methods have yet to prove

competitive results in unsupervised settings like those considered in our work. In contrast,

our approach to learn feature representations achieves remarkable accuracy and scalability

for both supervised and unsupervised tasks.

7.3 An End-to-End System for Predicting the Impact of Sci-

entific Concepts

Chapter 5 explored the promise of tracking features over time for improving prediction

accuracy of the prominence of scientific concepts in the future. In this section, we cover

additional relevant work.

Studying science is a science in and of itself. For example, the National Science Founda-

tion has two programs designed to fund this type of research: Science, Technology, and So-

ciety (STS), which is primarily oriented toward qualitative research, and Science of Science

and Innovation Policy (SciSIP), which is primarily oriented toward quantitative research.

STS as a field of study has a long history. As the name indicates, STS utilizes social science

and humanities approaches to understand the relationships among science, technology, and

society. There is a wide range of STS approaches. For example, laboratory ethnography

[Knorr-Cetina, 1999; Traweek, 1992] involves extended fieldwork within science and tech-

nology settings, observing and interviewing scientists and engineers in their native habitats.

Actor-network theory [Latour, 1988] involves tracing the relationships among human actors

and non-human actants. As such, technologies are seen as having some agency, or ability

to shape the world. Another approach commonly used within the domain of science and

technology policy is an expert panel, such as the Delphi method [Bornmann and Daniel,

2008]. Such qualitative approaches are useful for learning about specific labs or subfields in

rich detail, however they are not typically scalable. Thus, to automatically track scientific

innovation in real time, quantative approaches are far more appropriate.

Scientometrics, or the measurement of science, has long been used to understand science
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at the macro scale as well as to make policy recommendations [Edge, 1979; Bornmann and

Daniel, 2009; Schreiber, 2013]. Since ranking algorithms based on scientometric data have

demonstrated real potential to influence the direction of scientific progress [Beel and Gipp,

2009], it is important for these algorithms to take into account as much information as

possible to inform the resource allocation decisions of nations, institutions, and individual

researchers [Lane and Bertuzzi, 2011; Lane, 2010].

Study of scientific impact spans almost a century, during which time expanding data

sets and sophisticated tools have allowed for increasingly powerful results. Following several

decades of small, expensive studies conducted for journal evaluation and acquisition, major

citation indexing projects enabled the application of quantitative methods to the problems

of research evaluation [Narin, 1976] and scientific prestige [Cole and Cole, 1967; Bayer

and Folger, 1966]. Since then, metrics such as the Journal Impact Factor [Garfield, 2006],

which is primarily used to evaluate the impact of a journal, and, more recently, the h-Index

[Hirsch, 2005], which is primarily used to evaluate the impact of a scientist, have been used.

Scientometrics builds in part on the type of qualitative research described above, such as

study of the function of citation [Moravcsik and Murugesan, 1975; Chubin and Moitra, 1975;

Spiegel-Rösing, 1977] or the motivations for citation, often bringing these to bear in critique

of the use of citations in research evaluation [Bornmann and Daniel, 2008]. For example,

citation counts include not only works that build on previous work but also works that

negate the previous work or cite it perfunctorily [Ziman, 1968; Bonzi, 1982]. Together

these research streams comprise a large part of the quantitative science of science within

the social sciences. Machine learning has introduced new horizons in the study of science

[Losiewicz et al., 2000] that continue to expand with increasing computational power and

the availability of full text databases [Arbesman and Christakis, 2011].

An early paper speculated on the relationship between citation data and future author

performance [Garfield and Malin, 1968], and a few recent studies have attempted to predict

future citations received by an author based on features of past work. These include studies

of the predictive value of the h-index, which have played a role in the debates over that
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metric [Hirsch, 2007; Hönekopp and Khan, 2012], as well as attempts to predict changes in

an author’s h-index over time [Acuna et al., 2012; Penner et al., 2013; Dong et al., 2015].

[Zhu et al., 2015] present a variant of h-index called the hip-index (influence primed h-index)

based on datasets of papers and references that were influential for a paper and use it to

predict fellows of an organization. All of these studies have tended to use simple feature sets,

most often including citation-based indicators of past performance, although social factors

[Laurance et al., 2013], social network properties [McCarty et al., 2013; Sarigöl et al., 2014],

and structural variation models representing impact on state of the art [Chen, 2012] have

also been examined. Others [Ding et al., 2009] have experimented with weighted Pagerank

algorithms to rank authors in author co-citation networks and a HITS framework [Wang

et al., 2014b] for simultaneous ranking of future impact of papers and authors.

Network-based approaches, building on research in social network analysis, have proven

effective in helping to understand the structure of science [Birnholtz et al., 2013; Velden

et al., 2010; Velden and Lagoze, 2013]. While our research builds on these approaches, the

goal of Chapter 5 is to go beyond the typical network-based analyses that focus on nodes

and edges and instead consider the content of the edges via natural language processing of

full text. Importantly, our work goes one step further and captures the temporal variation

of characteristics produced by network-based and text-based approaches.

Previous work has applied bibliometrics at the level of entities discovered in full text

[Ding et al., 2013] as well as based on productivity, collaboration and influence [Havemann

and Larsen, 2015]. Additionally, topic proportions from Latent Dirichlet Allocation have

been used to study the history of scientific ideas [Hall et al., 2008]. To the best of our

knowledge, our work is the first to predict term frequencies as proxies for the emergence of

scientific concepts, and is novel in the sophistication of the full text features we bring to

bear on the problem. While previous work that has used full text in prediction has relied

on bags of words (e.g., [Yogatama et al., 2011; Yan et al., 2011; Boyack et al., 2011]), we

base some of our analysis on larger units of texts (phrases), on more linguistically motivated

features such as rhetorical analysis, and on the temporal patterns and relations among such
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features.

Recently, there has been more work on the analysis of scientific articles that could

ultimately be helpful for prediction of scientific impact [Tsai et al., 2013; Louis and Nenkova,

2013; Tan and Lee, 2014]. For example, the 2003 KDD Cup [Gehrke et al., 2003] included

a citation prediction track. Since then, approaches to prediction have matured, and despite

varying research designs, several classes of predictive variables have been established. These

include citation data [Manjunatha et al., 2003], journal characteristics [Callaham et al.,

2002; Lokker et al., 2008; Kulkarni et al., 2007], author characteristics [Castillo et al., 2007],

n-gram features drawn from abstracts and index terms [Ibáñez et al., 2009; Fu and Aliferis,

2008], download statistics [Brody et al., 2006], and social media mentions [Eysenbach, 2011].

Fu and Aliferis unified much of the early work in this area, reporting evidence that author

metrics improved the scores obtained by modeling journal characteristics alone, and that

adding metadata features improved scores still further [Fu and Aliferis, 2008]. More recent

natural language processing research has yielded mixed results on n-gram and topic features

drawn from full text [Yogatama et al., 2011; Yan et al., 2011], and the usefulness of full text

in citation prediction for papers remains an open question.

Much research has focused on particular disciplines and sub-disciplines of science. For

example, scientometric approaches have been applied to computer science [Guha et al.,

2013] as well as its subfields, such as human-computer interaction [Bartneck and Hu, 2009]

and computer-supported cooperative work [Horn et al., 2004]. Since the goal of Chapter 5

is to help predict innovation across various fields of science and engineering, we build on

this earlier work, but cannot rely solely upon metrics that have proven to be effective within

any one field.

7.4 Detecting Devastating Diseases in Search Logs

Chapter 6 explored the promise of harnessing temporal patterns in behavioral signals ex-

tracted from web search logs to early detect devastating diseases. Related research in a
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number of areas are relevant to our work. Specifically, we review relevant work for: (i)

health-related web searching; (ii) large-scale analyses of search behavior; and (iii) methods

for the early detection of diseases, with a focus on pancreatic cancer.

The web is an important source of health-related information for many people. To bet-

ter understand how people pursue health information, studies have examined online health

search using a variety of methods, including interviews [Peterson et al., 2003], surveys [Trot-

ter and Morgan, 2008], and analyses of large-scale search log data [Ayers and Kronenfeld,

2007; Bernstam et al., 2009]. According to a 2013 survey, 59% of American adults had used

the Web to find health information in the year preceding the survey, 35% of those adults

engaged in self-diagnosis, and over half of these self-diagnosing searchers then discussed the

matter with a clinician following the search [Fox and Duggan, 2013]. Despite the potential

benefits, concerns have been raised about the quality of online health information [Cline

and Haynes, 2001]. In a large-scale survey of the use of search for self-diagnosis, White

and Horvitz [White and Horvitz, 2009] found that almost 40% of participants experienced

increased anxiety from searching health information online. Studies have characterized

problems with symptom search, including the influence of poor accounting for base rates of

diseases and people’s bias to focus on results covering serious illnesses versus more likely be-

nign explanations. Such biases can lead to inappropriate anxiety [Lauckner and Hsieh, 2013;

White and Horvitz, 2009] and highlight the criticality of studying how patients use the Web,

including the nature and dynamics of queries, and content delivered in response.

There has been a large amount of research on the analysis of search behavior from search

engine logs. Log analysis provides insights to understand how people engage in information

seeking in online settings [White and Drucker, 2007], while also having applications for tasks

such as result ranking [Agichtein et al., 2006; Joachims, 2002], query suggestion [Jones

et al., 2006], prediction of future search actions and interests [Downey et al., 2007; Lau

and Horvitz, 1999], and detection of real-world events and activities [Richardson, 2009].

Given access to population-scale data on how people search for health information, this can

be applied for important tasks such as the detection of influenza [Ginsberg et al., 2009],
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the detection of adverse drug reactions [White et al., 2013], population-scale studies of

nutrition [West et al., 2013], epidemiology [Ginsberg et al., 2009], and studies of chronic

medical conditions such as pregnancy [Fourney et al., 2015]. Related to this research,

but focused on activity post-diagnosis, are studies of cancer-related searching [Bader and

Theofanos, 2003; Castleton et al., 2011; Helft, 2011], some of which have revealed strong

similarities between temporal patterns in search logs and those in practice [Ofran et al., 2012;

Paul et al., 2014]. Studies have leveraged online behavioral signals for early disease detection

at the population level [Ginsberg et al., 2009], and individually [De Choudhury et al., 2014;

Sadilek et al., 2012].

Screening high-risk individuals for pancreatic cancer is the only practical approach to

detect precancerous or cancerous changes in the pancreas at the phase in which surgical

intervention will have a high chance of cure [Klapman and Malafa, 2008]. Risk level can be

determined by factors such as race [Coughlin et al., 2000], family history [Lynch et al., 1996],

and a history of pancreatitis [Lowenfels et al., 1993]. Imaging studies via methods such

as endoscopic ultrasound, computer tomography scans, and magnetic resonance imaging

[Mertz et al., 2000; ?] have been useful to diagnose pancreatic cancer once the tumor is large

enough to cause unusual, salient symptoms that induce people to seek medical attention

(e.g., yellow eyes, changes in stool), but at this point the disease is more likely to be at

an advanced and unresectable stage (i.e., locally advanced or metastatic, when it cannot

be removed by surgery) [Legmann et al., 1998]. Common, seemingly innocuous symptoms

such as back pain, abdominal pain, itchy skin, unexplained weight loss and nausea (and

combinations and temporal patterns of these and other symptoms) may also be observed

in the query stream. Such symptom searches can provide patterns of symptoms that might

one day be employed in new kinds of health surveillance systems. Such systems could be

used to alert people who would otherwise not feel moved to see a healthcare professional.

Active, explicit screening for early signs of pancreatic cancer is not cost effective unless

there is a reasonable probability of detecting invasive or pre-invasive disease (at least 16%

according to one study [Rulyak et al., 2003]). A log-based methodology provides scale that
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is not achievable with more traditional epidemiological studies, which tend to be on the

order of tens or hundreds of participants [Huxley et al., 2005; Renehan et al., 2008].
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Chapter 8

Conclusions

In this dissertation, we studied and developed computational methods for efficient unsu-

pervised learning of robust feature representations from time series. We focused on two

types of applications: (i) applications that operate solely over time-series collections; and

(ii) applications where the analysis of time series complements the analysis of other types

of data. Next, we summarize our primary contributions:

• Efficient and Accurate Time-Series Clustering: In Chapter 3, we addressed

the problem of domain-independent, accurate, and scalable clustering of time series.

We characterized the drawbacks of existing methods for this task and we introduced

two novel time-series clustering methods. Specifically, we showed how to derive a dis-

tance measure from cross-correlation that offers important invariances to time-series

distortions in a principled manner. We also showed how to efficiently compute this

measure. We presented two novel methods to compute a single centroid or multiple

centroids per cluster when that distance measure is used. We developed two novel al-

gorithms for time-series clustering that rely on the aforementioned distance measure:

one algorithm computes a single centroid per cluster based on the entire set of time

series in each cluster, whereas the other (outlier-aware) algorithm computes multiple

centroids per cluster in order to consider the proximity and spatial distribution of time

series in each cluster. Then, we presented a one-nearest-neighbor classification algo-
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rithm that relies on time-series clustering as a subroutine to reduce the search space

and accelerate one-nearest-neighbor algorithms. Finally, we performed an extensive

experimental evaluation of our methods against state-of-the-art time-series distance

measures, clustering algorithms, and classification algorithms. Our findings showed

that our efficient and parameter-free distance measure leads to similar results to the

most accurate but computationally expensive distance measures that require parame-

ter tuning. In addition, our clustering methods outperform all state-of-the-art scalable

and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based

clustering approaches, with only one method achieving similar performance, but this

method requires tuning of parameters and cannot scale to large volumes of data. Fi-

nally, our evaluation suggested that we can rely on time-series clustering methods

as subroutines to effectively reduce the search space for one-nearest-neighbor time-

series classification algorithms. Consequently, we believe that our methods emerge as

domain-independent, accurate, and scalable approaches for time-series comparison,

clustering, and classification.

• Efficient Time-Series Representation Learning: In Chapter 4, we introduced

and addressed the problem of efficiently learning data-aware, low-dimensional repre-

sentations of time series that preserve the invariances offered by a given similarity

function. Our approach represents a departure from classic approaches in the time-

series literature where representation methods are agnostic to the similarity function

used in subsequent learning processes. Our objective was to simplify and unify the de-

sign of scalable time-series mining methods. To achieve this ambitious goal, we relied

on kernel methods. Specifically, kernel methods interact with data through pairwise

comparisons using a kernel function and, therefore, require constructing a data-to-data

similarity matrix. To alleviate the burdens associated with the high memory and run-

time costs of (i) computing the data-to-data matrix and (ii) performing dimensionality

reduction using such matrix, we proposed GRAIL, a generic representation learning

framework. GRAIL uses the Nyström method to reduce the data-to-data matrix to
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a data-to-landmark points matrix and relies on matrix sketching to approximate the

eigendecomposition of the data-to-data matrix and, therefore, learn low-dimensional

representations that preserve invariances offered by a user-specified kernel function.

The effectiveness of GRAIL critically relies on (i) the choice of kernel function; (ii) the

choice of landmark time series; and (iii) the unsupervised estimation of parameters

that affects the compactness and the reconstruction quality of the learned represen-

tations. We addressed these issues as follows: (i) we developed an efficient kernel

function to compare time series under important invariances for time-series distor-

tions; (ii) we constructed landmark time series using the effective time-series clustering

methods from Chapter 3; (iii) we presented a method to estimate kernel function pa-

rameters and compactness of representation; (iv) we described how to efficiently learn

GRAIL representations by approximating the eigendecomposition of the data-to-data

matrix using matrix sketching; (v) we showed how GRAIL representations accelerate

existing methods for major time-series mining tasks, such as querying and indexing,

clustering, classification, sampling, and visualization; and (vi) we evaluated our ideas

by conducting an extensive experimental evaluation. Our findings showed that ker-

nel classifiers using our kernel function significantly outperform one-nearest-neighbor

classifiers with state-of-the-art distance measures, which debunks a long-standing per-

ception in the time-series literature that such classifiers are difficult to beat. GRAIL

representations are more compact and have significantly better pruning power than

current time-series representations. Finally, GRAIL representations, combined with

kernel methods, significantly outperform, in terms of efficiency and accuracy, state-of-

the-art methods that operate over the full length of time series in all aforementioned

tasks. We believe that GRAIL rises as a new primitive for highly accurate, yet scal-

able, time-series analysis that significantly simplifies the design of new algorithms

while requiring minimal user input.

• An End-to-End System for Predicting the Impact of Scientific Concepts: In

Chapter 5, we studied the problem of predicting the future impact of scientific concepts
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and described an end-to-end system developed for this task by a team of researchers

at Columbia and several other universities. Our objective was to (i) develop generic,

simple, and lightweight methodologies to effectively extract features from time-varying

measurements that seamlessly integrate with techniques developed for other types of

data; and (ii) demonstrate the impact of exploiting methods from time-series analysis

to significantly improve the accuracy of prediction models used in such large-scale,

real-world application. Specifically, we reviewed the challenges of this ambitious, yet

important, problem of identifying research concepts that hold the most promise as

early as possible. We described the architecture of the system we built to facilitate

the extraction of characteristics from articles in the scientific literature and real-time

prediction of the future impact of scientific concepts. We outlined the large number

of characteristics that our system extracts from the metadata and the full text of

scientific articles. Then, we described a variety of principled statistical measures

capable of capturing patterns in short, sparse, and noisy time-varying characteristics

extracted from scientific articles. Finally, we performed a large-scale experimental

evaluation. Our results showed the clear benefit of full text features over metadata

features and that temporal features contribute the most in predictions. Across all our

experiments, combinations of full text features and metadata features with time series

relevant features yielded the greatest impact than any other indicator considered in

our analysis. We believe such simple methodology is well-suited for applications where

underlying operations produce thousands of user-defined characteristics that we need

to track over time and transform into actionable knowledge.

• Detecting Devastating Diseases in Search Logs: In Chapter 6, we explored

the promise of harnessing temporal patterns in behavioral signals extracted from web

search engine logs for early detection of devastating diseases. Together with collabo-

rators from Microsoft Research, we leveraged billions of queries from the Bing search

engine and studied the feasibility of doing early detection of the presence of pancre-

atic cancer in experiential user queries. We cast this as a binary classification task,
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where the model is trained on features extracted from search log query timelines of

experiential pancreatic cancer searchers and symptom-only searchers. We relied on a

similar methodology to the one we developed in Chapter 5 to extract features from

short, sparse, and noisy time series that often appear in the analysis of web search

engine logs. We summarize the contributions of this chapter as follows: (i) we in-

troduced the early detection of diseases as a promising new application of search log

mining and machine learning that scales to millions of searchers; (ii) we described the

process of generating a large-scale real-world dataset to study the feasibility of early

detecting experiential pancreatic cancer cases from longitudinal individual search ac-

tivity; (iii) we reviewed the large set of characteristics that we extract from query

timelines; (iv) we presented a simple methodology to track the temporal relationships

and patterns in the content of queries over time; (v) we described our prediction

model to forecast with significant lead times that users will later input experiential

queries for pancreatic cancer; (vi) we explored the influence of different factors, such

as the lead time or the presence of specific symptoms in the search activity, on the

predictive performance of our learned models, including true positive rates when false

positive rates are strictly controlled. Our study provided insights on the feasibility

of learning from search engine logs to predict future issuance of experiential queries

about pancreatic cancer at a low error rate. The success of these methods has im-

plications for online methods that would provide passive screening of searchers, to

offer early warning about potential signs of pancreatic cancer and other devastating

diseases. Our evaluation suggested that the combination of static features extracted

from query timelines with our temporal features yielded the greatest impact than any

other feature category considered in our analysis. Additionally, our analysis revealed

a number of important domain-specific findings. For example, we discovered that

conditioning on different symptoms and risk factors can enhance predictive power.

We found capture-cost tradeoffs associated with different symptoms and risk factors

in terms of the total number of truly positive cases identified versus the number of
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searchers who would be mistakenly alerted. We characterized model performance as

we increase lead time and we found that we can attain a true positive rate of 5-30%

while controlling the false positive rate to 0.00001-0.01 many months before a diag-

nostic query is observed. We believe that our simple methodology to reason about

the evolution of time-varying characteristics in such important, large-scale, and real-

world application, along with the interesting domain-specific findings that our work

revealed, will motivate new studies across different scientific disciplines and industrial

settings.

In summary, in this dissertation we investigated the design of computational methods

to automatically learn effective feature representations from time series. Our objective was

to simplify and unify the design of scalable and accurate time-series mining algorithms

by constructing time-series representations that require minimal input from scientists or

practitioners working over time-series collections. Specifically, we advocated that given a

method to compare or model time series, the extraction of compact feature representations

in time series can be fully automated. Importantly, such learned feature representations

seamlessly integrate with and, therefore, accelerate existing methods to perform major

time-series mining tasks. We hope that the contributions of this thesis will prove useful to

the research community and result in the development of faster, more scalable, and more

accurate algorithms for time-series analysis than those presented in this thesis.
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Chapter 9

Future Work

Despite the significant progress made in this dissertation, there are still many open and ex-

citing challenges in large-scale time-series analysis. Below, we focus on promising directions

to address two important and largely unexplored challenges in time-series analysis, which

are immediate extensions of our work in this dissertation.

• Online Clustering of Massive Time-Series Collections: In Chapter 3, we

addressed the problem of domain-independent, accurate, and scalable clustering of

time series. Specifically, we developed k-Shape and k-MS, two novel algorithms for

time-series clustering that rely on a scalable iterative refinement procedure similar to

the one used by the cornerstone k-means algorithm, but with significant differences.

k-Shape and k-MS rely on the SBD distance measure to compare time series; k-Shape

relies on the SE method to compute a single centroid per cluster based on the entire

set of time series in each cluster, whereas k-MS relies on MSE to compute multiple

centroids per cluster in order to consider the proximity and spatial distribution of time

series in each cluster. We showed that k-Shape and k-MS scale linearly to the number

of time series and through extensive experimental evaluation we demonstrated signif-

icant efficiency gains for our approaches in contrast to rival methods. However, our

algorithms currently operate in the standard offline setting where the set of time series

is known in advance and there is no restriction in the number of passes the algorithms
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can perform over the data. The high dimensionality of time series, combined with the

rapid growth of time-series collections, poses great challenges to cluster time series

with high performance and facilitate interactive exploration of time series in practice.

An interesting direction for future work would be to modify our algorithms to operate

in online settings, where algorithms often perform one pass over the data and retain

only small amounts of information. To facilitate time-series clustering under such sce-

nario, we need to develop new algorithmic ideas to address challenges associated with

the high dimensionality and the large volume of time series. To address challenges

associated with the high dimensionality of time series, a promising direction is to rely

on a time-series representation method to reduce the dimensionality of time series

and perform all operations, including time-series comparison and centroid computa-

tion, under the new low-dimensional representation. Considering that SBD relies on

Fourier transform for its efficient computation, one interesting direction is to repre-

sent time series using only the leading Fourier coefficients. Several approaches in the

literature explore similar ideas to approximate distance measures relying on correla-

tions or lag correlations [Li et al., 1996; Zhu and Shasha, 2002; Sakurai et al., 2005a;

Mueen et al., 2010] for pairs of time series. However, the computation of cluster cen-

troids under such low-dimensional representations requires to approximate the entire

dataset and not just pairs of time series, a problem that currently remains largely

unexplored. To address challenges associated with the large volume of time series,

we can rely on several paradigms developed for k-means-like algorithms to operate

in online settings [Bottou and Bengio, 1995; Guha et al., 2003; Ailon et al., 2009;

Sculley, 2010; Shindler et al., 2011]. However, the majority of such paradigms assume

efficient methods to update cluster centroids when new data arrives. SE and MSE,

our approaches to compute cluster centroids, rely on expensive eigendecomposition

methods to extract centroids and, therefore, it becomes prohibitively expensive to

re-calculate centroids for every new time series that arrives. A promising direction

to resolve this issue is to rely on the methodology of matrix sketching [Liberty, 2013]
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that enables eigendecomposition of matrices in online settings.

• Learning Alternative Time-Series Representations: In Chapter 4, we intro-

duced and addressed the problem of efficiently learning data-aware, low-dimensional

representations of time series that preserve the invariances offered by a given sim-

ilarity function. To achieve this ambitious goal, we relied on kernel methods and

proposed GRAIL, a generic representation learning framework. GRAIL uses the Nys-

tröm method to reduce the data-to-data matrix to a data-to-landmark points matrix

and relies on matrix sketching [Liberty, 2013] to approximate the eigendecomposition

of the data-to-data matrix. Through these two steps, GRAIL learns low-dimensional

representations that preserve invariances offered by a user-specified kernel function.

The dimensionality of the representations learned through Nyström corresponds to

the number of landmark time series extracted for the entire dataset and, therefore, is

significantly smaller than the size of the entire dataset. Unfortunately, for very large

datasets, Nyström might require thousands of landmark time series to accurately

approximate the data-to-data matrix. In such cases, it is very likely that the dimen-

sionality of the learned representation surpasses the dimensionality of the original time

series, which defies the original purpose of producing low-dimensional representations.

To eliminate this issue, we proposed to use matrix sketching to estimate the eigen-

decomposition of the entire data-to-data matrix and, therefore, we reduce even more

the dimensionality of the representations by retaining only the top eigenvalues and

eigenvectors of the data-to-data matrix. However, depending on the dataset, this step

might impact the approximation quality of the new representation. A promising direc-

tion is to rely on sparse coding mechanisms [Olshausen and Field, 1997; Mallat, 1999;

Lee et al., 2007; Mairal et al., 2009] to learn sparse representations for time series in-

stead of the compact representations that we currently learn with GRAIL. Specifically,

given a set of atoms that compose a dictionary, sparse coding aims to represent data

as a linear combination of only a few basic atoms. The difference to Nyström is that

sparse coding enforces a sparsity constrain in the learning of representations to avoid
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construction of representations that express time series as a linear combination of all

atoms in a dictionary. Having shown that k-Shape can serve as a generic method for

dictionary learning from time series, we can rely on the building blocks of SINK and

WINK kernels that we used for GRAIL, to develop sparse time-series approximations.

An alternative approach is to learn low-dimensional compact representations using

neural networks [Zhang et al., 1998] and deep learning methods [Bengio et al., 2007b;

Bengio et al., 2007a; Bengio et al., 2012]. These approaches construct multiple layers

of representations to facilitate the modeling of complex structures in data. In contrast

to kernel methods that require a user-defined kernel function to assess the similarity

between pairs of time series, neural methods require the selection of the network archi-

tecture that better captures the desired properties in data. For example, Restricted

Boltzmann Machines [Hinton et al., 2006; Hinton and Salakhutdinov, 2006], Recurrent

Neural Networks [Hüsken and Stagge, 2003], and convolutional Restricted Boltzmann

Machines [Lee et al., 2009a; Lee et al., 2009b] are some classes of neural methods that

are suitable to model time series. For applications where large volumes of time series

are available, we foresee a great promise in using neural methods to learn time-series

representations.

This dissertation develops several methods, tools, and building blocks to help us address

these open problems in large-scale time-series analysis, as we discussed above.
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Appendix A

Cross-Correlation Variants under

Time-Series Normalizations

As discussed in Chapter 3 and more specifically in Section 3.3.1, the choice of normalizations

for the data and the cross-correlation measure can significantly impact the cross-correlation

sequence produced. To understand the sensitivity of cross-correlation variants to data

normalizations we evaluate their performance using 48 datasets from the UCR time-series

collection [Keogh et al., 2015]. (These 48 datasets are a subset of the 85 datasets used in

Chapter 3.) This collection contains z-normalized datasets but the unnormalized versions

are not available. Therefore, to experiment with unnormalized versions of these datasets

and ensure that the initial sequences differ in amplitude, we first multiply each sequence

with a random number chosen individually for that sequence. Then, we perform and study

three common time-series normalizations: (1) OptimalScaling: to match two time series

~x and ~y, we compute their optimal scaling coefficient c = ~x·~yT
~y·~yT , which is used for every

pairwise comparison (e.g., SBD(~x,~y) is computed as SBD(~x,c ·~y)); (2) ValuesBetween0-1 :

we normalize each sequence ~x such that its values fall between 0 and 1, by transforming it

into ~x′ = ~x−min(~x)
max(~x)−min(~x) ; and (3) z-normalization: we normalize each sequence ~x such that

its mean is 0 and its standard deviation is 1, by transforming it into ~x′ = ~x−mean(~x)
std(~x) .

We evaluate the 1-NN classification accuracy of each cross-correlation variant, namely,
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Figure A.1: Comparison of SBD, NCCb, and NCCu over 48 datasets under the OptimalScal-
ing normalization. Circles above the diagonal indicate datasets over which SBD has better
accuracy than the compared method.
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Figure A.2: Comparison of SBD, NCCb, and NCCu over 48 datasets under the
ValuesBetween0-1 normalization. Circles above the diagonal indicate datasets over which
SBD has better accuracy than the compared method.
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SBD, NCCu, and NCCb, on each dataset for the three common time-series normalization

scenarios. Figure A.1 presents the results for the OptimalScaling normalization. In par-

ticular, SBD significantly outperforms both NCCu (Figure A.1a) and NCCb (Figure A.1b)

in all 48 datasets and, in turn, NCCb outperforms NCCu in 40 datasets, with statistical

significance.

Similarly, for ValuesBetween0-1 data normalization, SBD significantly outperforms NCCu

(Figure A.2a) and NCCb (Figure A.2b) in all 48 datasets. NCCb performs similarly to or

better than NCCu in 41 datasets and the Wilcoxon test suggests this difference in accu-

racy is statistically significant. Finally, for z-normalization, SBD and NCCb achieve similar

performance and both significantly outperform NCCu.

Therefore, we can conclude that SBD is the most robust cross-correlation variant as

it achieves better performance across multiple different time series normalizations. On

average, SBD achieves accuracy values of 0.699, 0.779, and 0.795, for OptimalScaling,

ValuesBetween0-1, and z-normalization normalizations, respectively.
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Appendix B

Scalability of k-Shape

As discussed in Chapter 3 and more specifically in Section 3.3.3, k-Shape requires O(max{n ·

k ·m · log(m), n ·m2, k ·m3}) time per iteration to cluster n time series of length m into k

clusters. The majority of the computational cost of our algorithm depends on the time-

series length m, whereas its dependence on the number n of time series is linear. To

better understand the scalability of k-Shape, we use the synthetic CBF dataset [Saito, 1994]

because it enables experiments with varying values of both n and m without changing any

of its general properties. Figure B.1 reports the results of our scalability experiments where

both n and m are up to one order of magnitude larger than the biggest dataset in the UCR

archive [Keogh et al., 2015]. We report the average CPU runtime of 5 runs. Specifically,

in Figure B.1a, we vary n while we set m = 128 as in the original CBF dataset: k-Shape,

similarly to k+AVG+ED, scales linearly with the number of time series without any loss

in accuracy for both methods. Importantly, k-Shape, remains significantly faster than k-

AVG+ED with the increasing number of time series because k-Shape requires 45% fewer

iterations to converge than k+AVG+ED does. Then, in Figure B.1b, we vary m while we

set n= 18K: k-Shape still outperforms k-AVG+ED for m� n but k-Shape becomes slower,

as expected, when the time-series length is large and approaches the total number of time

series in the dataset. Similarly to the previous experiment, there is no loss in accuracy for

either technique.
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Figure B.1: Runtime of k-AVG+ED and k-Shape as a function of (a) the number of time
series n and (b) the time series length m.

Therefore, we can conclude that k-Shape is an efficient and scalable method to cluster

large time-series collections in the common case when the time series length is lower than

the number of time series (i.e., when m� n).



APPENDIX C. DESCRIPTION OF THE UCR TIME-SERIES ARCHIVE 253

Appendix C

Description of the UCR

Time-Series Archive

Throughout this thesis, we evaluate our ideas and algorithms using the world’s largest

public collection of labeled time-series datasets, namely, the UCR time-series datasets

archive [Keogh et al., 2015]. As of the writing of this dissertation, the UCR archive consists

of 85 real and synthetic datasets that span several different domains. These datasets are

annotated such that each time series belongs to only one class. Additionally, each dataset

is split into training and test sets. In Table C.1, we provide the name of each dataset in

the UCR archive along with the number of time series in the training and test sets, the

number of classes, and the lengths of the time series. We perform extensive experimental

evaluations using these datasets in Chapters 3 and 4.

Dataset Name Training Instances Test Instances Classes Length
50words 450 455 50 270
Adiac 390 391 37 176

ArrowHead 36 175 3 251
Beef 30 30 5 470

BeetleFly 20 20 2 512
BirdChicken 20 20 2 512

CBF 30 900 3 128
Car 60 60 4 577

ChlorineConcentration 467 3840 3 166
CinC_ECG_torso 40 1380 4 1639

Coffee 28 28 2 286
Computers 250 250 2 720
Cricket_X 390 390 12 300
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Cricket_Y 390 390 12 300
Cricket_Z 390 390 12 300

DiatomSizeReduction 16 306 4 345
DistalPhalanxOutlineAgeGroup 139 400 3 80
DistalPhalanxOutlineCorrect 276 600 2 80

DistalPhalanxTW 139 400 6 80
ECG200 100 100 2 96
ECG5000 500 4500 5 140

ECGFiveDays 23 861 2 136
Earthquakes 139 322 2 512

ElectricDevices 8926 7711 7 96
FaceAll 560 1690 14 131
FaceFour 24 88 4 350
FacesUCR 200 2050 14 131

Fish 175 175 7 463
FordA 1320 3601 2 500
FordB 810 3636 2 500

Gun_Point 50 150 2 150
Ham 109 105 2 431

HandOutlines 370 1000 2 2709
Haptics 155 308 5 1092
Herring 64 64 2 512

InlineSkate 100 550 7 1882
Insect 220 1980 11 256

ItalyPowerDemand 67 1029 2 24
LargeKitchenAppliances 375 375 3 720

Lighting2 60 61 2 637
Lighting7 70 73 7 319
MALLAT 55 2345 8 1024
Meat 60 60 3 448

MedicalImages 381 760 10 99
MiddlePhalanxOutlineAgeGroup 154 400 3 80
MiddlePhalanxOutlineCorrect 291 600 2 80

MiddlePhalanxTW 154 399 6 80
Motes 20 1252 2 84

NonInvasiveFatalECG_Thorax1 1800 1965 42 750
NonInvasiveFatalECG_Thorax2 1800 1965 42 750

OSULeaf 200 242 6 427
OliveOil 30 30 4 570

PhalangesOutlinesCorrect 1800 858 2 80
Phoneme 214 1896 39 1024
Plane 105 105 7 144

ProximalPhalanxOutlineAgeGroup 400 205 3 80
ProximalPhalanxOutlineCorrect 600 291 2 80

ProximalPhalanxTW 205 400 6 80
RefrigerationDevices 375 375 3 720

ScreenType 375 375 3 720
ShapeletSim 20 180 2 500
ShapesAll 600 600 60 512

SmallKitchenAppliances 375 375 3 720
SonyAIBORobotSurface 20 601 2 70
SonyAIBORobotSurfaceII 27 953 2 65

StarLightCurves 1000 8236 3 1024
Strawberry 370 613 2 235
SwedishLeaf 500 625 15 128
Symbols 25 995 6 398

Synthetic_control 300 300 6 60
ToeSegmentation1 40 228 2 277
ToeSegmentation2 36 130 2 343

Trace 100 100 4 275
TwoLeadECG 23 1139 2 82
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Two_Patterns 1000 4000 4 128
UWaveGestureLibraryAll 896 3582 8 945

Wafer 1000 6164 2 152
Wine 57 54 2 234

WordsSynonyms 267 638 25 270
Worms 77 181 5 900

WormsTwoClass 77 181 2 900
Yoga 300 3000 2 426

uWaveGestureLibrary_X 896 3582 8 315
uWaveGestureLibrary_Y 896 3582 8 315
uWaveGestureLibrary_Z 896 3582 8 315

Table C.1: Description of the time-series datasets in the UCR archive [Keogh et al., 2015].


	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	2 Background and Preliminaries
	2.1 Definitions and Notation
	2.2 Time-Series Invariances
	2.3 Time-Series Distance Measures
	2.4 Time-Series Representations
	2.5 Time-Series Tasks

	3 Efficient and Accurate Time-Series Clustering
	3.1 Overview and Motivation
	3.2 Preliminaries
	3.2.1 Theoretical Background
	3.2.2 Time-Series Clustering Algorithms
	3.2.3 Time-Series Averaging Techniques
	3.2.4 Problem Definition

	3.3 Shape-based Clustering of Time Series
	3.3.1 Time-Series Shape Similarity
	3.3.2 Time-Series Shape Extraction
	3.3.3 Shape-based Time-Series Clustering Methods

	3.4 Exploiting Clustering for Faster One-Nearest-Neighbor Classification
	3.5 Experimental Settings
	3.6 Experimental Results
	3.6.1 Evaluation of SBD Against Other Distance Measures
	3.6.2 Robustness of Runtime Results Across Implementations
	3.6.3 Evaluation of k-Shape and k-MS Against Scalable Methods
	3.6.4 Evaluation of k-Shape and k-MS Against Non-Scalable Methods
	3.6.5 Evaluation of k-Shape and k-MS Against Outlier-Aware Methods
	3.6.6 Evaluation of k-Shape and k-MS Against a Shapelet-Based Method
	3.6.7 Evaluation of NSC Against Data Editing Methods
	3.6.8 Summary of Experimental Evaluation

	3.7 Conclusions

	4 Efficient Time-Series Representation Learning
	4.1 Overview and Motivation
	4.2 Preliminaries
	4.2.1 Linear Dimensionality Reduction
	4.2.2 Time-Series Representation Methods
	4.2.3 Invariances and Distance Measures
	4.2.4 Nonlinear Dimensionality Reduction
	4.2.5 Approximations for Kernel Methods
	4.2.6 Problem Definition

	4.3 The GRAIL Framework
	4.3.1 Warp-Invariant Kernel for Time Series
	4.3.2 Time-Series Dictionary Learning
	4.3.3 Parameter Tuning
	4.3.4 Time-Series Representation Learning

	4.4 Time-Series Mining with GRAIL
	4.5 Experimental Settings
	4.6 Experimental Results
	4.6.1 Evaluation of WINK Against Other Distance Measures
	4.6.2 Evaluation of k-Shape Against Other Dictionary Learning Methods
	4.6.3 Evaluation of Parameter Tuning Method for WINK
	4.6.4 Evaluation of GRAIL Against Other Representations
	4.6.5 Evaluation of GRAIL for Querying and Indexing
	4.6.6 Evaluation of GRAIL for Classification
	4.6.7 Evaluation of GRAIL for Clustering
	4.6.8 Evaluation of GRAIL for Sampling
	4.6.9 Evaluation of GRAIL for Visualization
	4.6.10 Summary of Experimental Evaluation

	4.7 Conclusions

	5 An End-to-End System for Predicting the Impact of Scientific Concepts
	5.1 Overview and Motivation
	5.2 System Architecture
	5.3 Early Prediction of Scientific Impact
	5.3.1 Feature Extraction from Metadata and Full Text
	5.3.2 Feature Aggregation and Temporal Pattern Extraction
	5.3.3 Prediction Model and Methodology

	5.4 Experimental Settings
	5.5 Experimental Results
	5.5.1 Evaluation of our Prediction Model Against Other Models
	5.5.2 Evaluation of System Predictions
	5.5.3 Contribution of Individual Features and Feature Categories

	5.6 Conclusions

	6 Detecting Devastating Diseases in Search Logs
	6.1 Overview and Motivation
	6.2 Dataset Creation to Study Pancreatic Cancer Searchers
	6.2.1 Anonymized Web Search Engine Logs
	6.2.2 Ontology of Symptoms and Risk Factors
	6.2.3 Extraction of Pancreatic Cancer Searchers and Symptom Searchers
	6.2.4 Dataset Augmentation, Tagging, and Filtering Steps
	6.2.5 Extraction of Positive and Negative Pancreatic Cancer Cases

	6.3 Early Detection of Experiential Searchers
	6.3.1 Feature Extraction for Query Timelines
	6.3.2 Feature Aggregation and Temporal Pattern Extraction
	6.3.3 Problem Description and Prediction Model

	6.4 Experimental Results
	6.4.1 Overall Performance of Prediction Model
	6.4.2 Evaluation of Model with Different Lead Times
	6.4.3 Contribution of Individual Features
	6.4.4 Contribution of Feature Categories
	6.4.5 Model Performance Conditioned on Symptoms and Risk Factors
	6.4.6 Deploying Learned Model in Practice
	6.4.7 Limitations and Discussion

	6.5 Conclusions

	7 Related Work
	7.1 Efficient and Accurate Time-Series Clustering
	7.2 Efficient Time-Series Representation Learning
	7.3 An End-to-End System for Predicting the Impact of Scientific Concepts
	7.4 Detecting Devastating Diseases in Search Logs

	8 Conclusions
	9 Future Work
	Bibliography
	Appendix A Cross-Correlation Variants under Time-Series Normalizations
	Appendix B Scalability of k-Shape
	Appendix C Description of the UCR Time-Series Archive

